% % teil1.tex -- Beispiel-File für das Paper % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Lösung \label{parzyl:section:teil1}} \rhead{Lösung} Die Differentialgleichungen \eqref{parzyl:sep_dgl_1} und \eqref{parzyl:sep_dgl_2} können mit Hilfe der Whittaker Gleichung gelöst werden. \begin{definition} Die Funktion \begin{equation*} W_{k,m}(z) = e^{-z/2} z^{m+1/2} \, {}_{1} F_{1} ( {\textstyle \frac{1}{2}} + m - k, 1 + 2m; z) \end{equation*} heisst Whittaker Funktion und ist eine Lösung von der Whittaker Differentialgleichung \begin{equation} \frac{d^2W}{d z^2} + \left(-\frac{1}{4} + \frac{k}{z} + \frac{\frac{1}{4} - m^2}{z^2} \right) W = 0. \label{parzyl:eq:whitDiffEq} \end{equation} \end{definition} Es wird nun die Differentialgleichung bestimmt, welche \begin{equation} w = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right) \end{equation} als Lösung hat. Dafür wird $w$ in \eqref{parzyl:eq:whitDiffEq} eingesetzt woraus \begin{equation} \frac{d^2 w}{dz^2} - \left(\frac{1}{4} z^2 - 2k\right) w = 0 \label{parzyl:eq:weberDiffEq} \end{equation} resultiert. DIese Differentialgleichung ist dieselbe wie \eqref{parzyl:sep_dgl_2} und \eqref{parzyl:sep_dgl_2}, welche somit $w$ als Lösung haben. Da es sich um eine Differentialgleichung zweiter Ordnung handelt, hat sie nicht nur eine sondern zwei Lösungen. Die zweite Lösung der Whittaker-Gleichung ist $W_{k,-m} (z)$. Somit hat \eqref{parzyl:eq:weberDiffEq} \begin{align} w_1(k, z) & = z^{-1/2} W_{k,-1/4} \left({\textstyle \frac{1}{2}} z^2\right)\\ w_2(k, z) & = z^{-1/2} W_{k,1/4} \left({\textstyle \frac{1}{2}} z^2\right) \end{align} als Lösungen. Mit der Hypergeometrischen Funktion ausgeschrieben ergeben sich die Lösungen \begin{align} \label{parzyl:eq:solution_dgl} w_1(k,z) &= e^{-z^2/4} \, {}_{1} F_{1} ( {\textstyle \frac{1}{4}} - k, {\textstyle \frac{1}{2}} ; {\textstyle \frac{1}{2}}z^2) \\ w_2(k,z) & = z e^{-z^2/4} \, {}_{1} F_{1} ({\textstyle \frac{3}{4}} - k, {\textstyle \frac{3}{2}} ; {\textstyle \frac{1}{2}}z^2). \end{align} In der Literatur gibt es verschiedene Standartlösungen für $w(k,z)$ präsentiert. Whittaker und Watson zeigen in \cite{parzyl:whittaker} eine Lösung \begin{equation} D_n(z) = \frac{ \Gamma \left( {\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{2}} z^{-\frac{1}{2}} }{ \Gamma \left( {\textstyle \frac{1}{2}} \right) - {\textstyle \frac{1}{2}} n) } M_{\frac{1}{2} n + \frac{1}{4}, - \frac{1}{4}} \left(\frac{1}{2}z^2\right) + \frac{ \Gamma\left(-{\textstyle \frac{1}{2}}\right) 2^{\frac{1}{2}n + \frac{1}{2}} z^{-\frac{1}{2}} }{ \Gamma\left(- {\textstyle \frac{1}{2}} n\right) } M_{\frac{1}{2} n + \frac{1}{4}, \frac{1}{4}} \left(\frac{1}{2}z^2\right) \end{equation} welche die Differenzialgleichung \begin{equation} \frac{d^2D_n(z)}{dz^2} + \left(n + \frac{1}{2} - \frac{1}{4} z^2\right)D_n(z) = 0 \end{equation} löst. In \cite{parzyl:abramowitz-stegun} sind zwei Lösungen $U(a, z)$ und $V(a,z)$ \begin{align} U(a,z) &= \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \\ V(a,z) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{ \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \right\} \end{align} mit \begin{align} Y_1 &= \frac{1}{\sqrt{\pi}} \frac{\Gamma\left({\textstyle \frac{1}{4} - {\textstyle \frac{1}{2}}a}\right)} {2^{\frac{1}{2} a + \frac{1}{4}}} w_1\\ Y_2 &= \frac{1}{\sqrt{\pi}} \frac{\Gamma\left({\textstyle \frac{3}{4} - {\textstyle \frac{1}{2}}a}\right)} {2^{\frac{1}{2} a - \frac{1}{4}}} w_2 \end{align} der Differenzialgleichung \begin{equation} \frac{d^2 y}{d z^2} - \left(\frac{1}{4} z^2 + a\right) y = 0 \end{equation} beschrieben. \begin{align} U(a,z) &= \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 - \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \\ V(a,z) &= \frac{1}{\Gamma \left({\textstyle \frac{1}{2} - a}\right)} \left\{ \sin\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_1 + \cos\left[\pi \left({\textstyle \frac{1}{4}} + {\textstyle \frac{1}{2}} a\right)\right] Y_2 \right\} \end{align} mit \begin{align} Y_1 &= \frac{1}{\sqrt{\pi}} \frac{\Gamma\left({\textstyle \frac{1}{4} - {\textstyle \frac{1}{2}}a}\right)} {2^{\frac{1}{2} a + \frac{1}{4}}} w_1\\ Y_2 &= \frac{1}{\sqrt{\pi}} \frac{\Gamma\left({\textstyle \frac{3}{4} - {\textstyle \frac{1}{2}}a}\right)} {2^{\frac{1}{2} a - \frac{1}{4}}} w_2 \end{align} Die Lösungen $U(a,z)$ und $V(a, z)$ können auch mit $D_n(z)$ ausgedrückt werden \begin{align} U(a,z) &= D_{-a-1/2}(z) \\ V(a,z) &= \frac{\Gamma \left({\textstyle \frac{1}{2}} + a\right)}{\pi} \left[\sin\left(\pi a\right) D_{-a-1/2}(z) + D_{-a-1/2}(-x)\right]. \end{align}