% % einleitung.tex -- Beispiel-File für die Einleitung % Author: Réda Haddouche % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Was ist das Sturm-Liouville-Problem} Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischen Mathematiker Joseph Liouville. Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt. Diese gilt für die Lösung von gewöhnlichen Differentialgleichungen. Handelt es sich um eine partielle Differentialgleichung, kann man sie mittels Separation in mehrere gewöhnliche Differentialgleichungen umwandeln. \begin{definition} \index{Sturm-Liouville-Gleichung}% Wenn die lineare homogene Differentialgleichung \[ \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0 \] als \begin{equation} \label{sturmliouville:eq:sturm-liouville-equation} \frac{d}{dx} \biggl ( p(x) \frac{dy}{dx}\biggr ) + (q(x) + \lambda w(x)) y = 0 \end{equation} geschrieben werden kann, dann wird die Gleichung~\eqref{sturmliouville:eq:sturm-liouville-equation} als Sturm-Liouville-Gleichung bezeichnet. \end{definition} Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können in die Form der Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation} umgewandelt werden. Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die Randbedingungen, die im nächsten Unterkapitel behandelt werden. \subsection{Randbedingungen \label{sturmliouville:sub:was-ist-das-slp-randbedingungen}} Geeignete Randbedingungen sind erforderlich, um die Lösungen einer Differentialgleichung eindeutig zu bestimmen. Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs \begin{equation} \begin{aligned} \label{sturmliouville:eq:randbedingungen} k_a y(a) + h_a p(a) y'(a) &= 0 \\ k_b y(b) + h_b p(b) y'(b) &= 0 \end{aligned} \end{equation} ist das klassische Sturm-Liouville-Problem. \subsection{Koeffizientenfunktionen \label{sturmliouville:sub:koeffizientenfunktionen}} Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen bezeichnet. Diese Funktionen erhält man, indem man eine Differentialgleichung in die Sturm-Liouville-Form bringt und dann die Koeffizientenfunktionen vergleicht. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. Die Eigenschaften der Koeffizientenfunktionen haben einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden im nächsten Abschnitt diskutiert. % %Kapitel mit "Das reguläre Sturm-Liouville-Problem" % \subsection{Das reguläre und singuläre Sturm-Liouville-Problem \label{sturmliouville:sub:reguläre_sturm_liouville_problem}} Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. \begin{definition} \label{sturmliouville:def:reguläres_sturm-liouville-problem} \index{regläres Sturm-Liouville-Problem} Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind: \begin{itemize} \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein \item sowie in einem endlichen Intervall $[a,b]$ integrierbar sein. \item $p(x)$ und $w(x)$ sind $>0$. \item Es gelten die Randbedingungen \eqref{sturmliouville:eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} Wird eine oder mehrere dieser Bedingungen nicht erfüllt, so handelt es sich um ein singuläres Sturm-Liouville-Problem. \begin{beispiel} Das Randwertproblem \begin{equation} \begin{aligned} x^2y'' + xy' + (\lambda^2x^2 - m^2)y &= 0 \qquad 0