% % einleitung.tex -- Beispiel-File für die Einleitung % Author: Réda Haddouche % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % % TODO: % order: % 1. State goal of showing examples in intro % 2. Show Sturm-Liouville form % 3. Explain boundary conditions as necessary in regards to examples % (make singular property brief) % % Remove Eigenvaluedecomposition -> is discussed in properties of solutions % Check for readability \section{Was ist das Sturm-Liouville-Problem\label{sturmliouville:section:teil0}} \rhead{Was ist das Sturm-Liouville-Problem} Das Sturm-Liouville-Problem wurde benannt nach dem schweizerisch-französischen Mathematiker und Physiker Jacques Charles Fran\c{c}ois Sturm und dem französischen Mathematiker Joseph Liouville. Gemeinsam haben sie in der mathematischen Physik die Sturm-Liouville-Theorie entwickelt. Dieses gilt für die Lösung von gewöhnlichen Differentialgleichungen oder partielle Differentialgleichung. Wenn es sich um eine partielle Differentialgleichung handelt, kann man sie mittels Separation in mehrere gewöhnliche Differentialgleichungen umwandeln. \begin{definition} \index{Sturm-Liouville-Gleichung}% Wenn die lineare homogene Differentialgleichung \[ \frac{d^2y}{dx^2} + a(x)\frac{dy}{dx} + b(x)y = 0 \] als \begin{equation} \label{sturmliouville:eq:sturm-liouville-equation} \frac{d}{dx} (p(x) \frac{dy}{dx}) + (q(x) + \lambda w(x)) y = 0 \end{equation} geschrieben werden kann, dann wird die Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation} als Sturm-Liouville-Gleichung bezeichnet. \end{definition} Alle homogenen linearen gewöhnlichen Differentialgleichungen 2. Ordnung können in die Form der Gleichung \eqref{sturmliouville:eq:sturm-liouville-equation} umgewandelt werden. Damit es sich um ein Sturm-Liouville-Problem handelt, benötigt es noch die Randbedingungen, die im nächsten Unterkapitel behandelt wird. \subsection{Randbedingungen \label{sturmliouville:sub:was-ist-das-slp-randbedingungen}} Geeignete Randbedingungen sind erforderlich, um die Lösungen einer Differentialgleichung genau zu bestimmen. Die Sturm-Liouville-Gleichung mit homogenen Randbedingungen des dritten Typs \begin{equation} \begin{aligned} \label{sturmliouville:eq:randbedingungen} k_a y(a) + h_a p(a) y'(a) &= 0 \\ k_b y(b) + h_b p(b) y'(b) &= 0 \end{aligned} \end{equation} ist das klassische Sturm-Liouville-Problem. \subsection{Koeffizientenfunktionen \label{sturmliouville:sub:koeffizientenfunktionen}} Die Funktionen $p(x)$, $q(x)$ und $w(x)$ werden als Koeffizientenfunktionen bezeichnet. Diese Funktionen erhält man, indem man eine Differentialgleichung in die Sturm-Liouville-Form bringt und dann die Koeffizientenfunktionen vergleicht. Die Funktion $w(x)$ (manchmal auch $r(x)$ genannt) wird als Gewichtsfunktion oder Dichtefunktion bezeichnet. Die Eigenschaften der Koeffizientenfunktionen haben einen großen Einfluss auf die Lösbarkeit des Sturm-Liouville-Problems und werden im nächsten Abschnitt diskutiert. % %Kapitel mit "Das reguläre Sturm-Liouville-Problem" % \subsection{Das reguläre und singuläre Sturm-Liouville-Problem \label{sturmliouville:sub:reguläre_sturm_liouville_problem}} Damit es sich um ein reguläres Sturm-Liouville-Problem handelt, müssen einige Bedingungen beachtet werden. \begin{definition} \label{sturmliouville:def:reguläres_sturm-liouville-problem} \index{regläres Sturm-Liouville-Problem} Die Bedingungen für ein reguläres Sturm-Liouville-Problem sind: \begin{itemize} \item Die Funktionen $p(x), p'(x), q(x)$ und $w(x)$ müssen stetig und reell sein \item sowie in einem endlichen Intervall $[a,b]$ integrierbar sein. \item $p(x)$ und $w(x)$ sind $>0$. \item Es gelten die Randbedingungen \eqref{sturmliouville:eq:randbedingungen}, wobei $|k_i|^2 + |h_i|^2\ne 0$ mit $i=a,b$. \end{itemize} \end{definition} Wird eine oder mehrere dieser Bedingungen nicht erfüllt, so handelt es sich um ein singuläres Sturm-Liouville-Problem. \begin{beispiel} Das Randwertproblem \begin{equation} \begin{aligned} x^2y'' + xy' + (\lambda^2x^2 - m^2)y &= 0 \qquad 0