% % tschebyscheff_beispiel.tex % Author: Réda Haddouche % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \subsection{Tschebyscheff-Polynome\label{sub:tschebyscheff-polynome}} Im Kapitel \ref{sub:beispiele_sturm_liouville_problem} sind die Koeffizientenfunktionen die man braucht schon aufgelistet, und zwar mit \begin{align*} w(x) &= \frac{1}{\sqrt{1-x^2}} \\ p(x) &= \sqrt{1-x^2} \\ q(x) &= 0. \end{align*} Da die Sturm-Liouville-Gleichung \begin{equation} \label{eq:sturm-liouville-equation-tscheby} \frac{d}{dx}\lbrack \sqrt{1-x^2} \frac{dy}{dx} \rbrack + \lbrack 0 + \lambda \frac{1}{\sqrt{1-x^2}} \rbrack y = 0 \end{equation} nun mit den Koeffizientenfunktionen aufgestellt werden kann, bleibt die Frage, ob es sich um ein reguläres oder singuläres Sturm-Liouville-Problem handelt. Für das reguläre Problem laut der Definition \ref{def:reguläres_sturm-liouville-problem} muss die funktion $p(x) = \sqrt{1-x^2}$, $p'(x) = -2x$, $q(x) = 0$ und $w(x) = \frac{1}{\sqrt{1-x^2}}$ stetig und reell sein - und sie sind es auch. Auf dem Intervall $(-1,1)$ sind die Tschebyscheff-Polynome erster Art mit Hilfe von Hyperbelfunktionen \[ T_n(x) = \cos n (\arccos x). \] Für $x>1$ und $x<-1$ sehen die Polynome wie folgt aus: \[ T_n(x) = \left\{\begin{array}{ll} \cosh (n \arccos x), & x > 1\\ (-1)^n \cosh (n \arccos (-x)), & x<-1 \end{array}\right., \] jedoch ist die Orthogonalität nur auf dem Intervall $[ -1, 1]$ sichergestellt. Die nächste Bedingung beinhaltet, dass die Funktion $p(x)^{-1}$ und $w(x)>0$ sein müssen. Die Funktion \begin{equation*} p(x)^{-1} = \frac{1}{\sqrt{1-x^2}} \end{equation*} ist die gleiche wie $w(x)$. Für die Verifizierung der Randbedingungen benötigt man erneut $p(x)$. Da sich die Polynome nur auf dem Intervall $[ -1,1 ]$ orthogonal verhalten, sind $a = -1$ und $b = 1$ gesetzt. Beim einsetzen in die Randbedingung \ref{eq:randbedingungen}, erhält man \[ \begin{aligned} k_a y(-1) + h_a y'(-1) &= 0 \\ k_b y(-1) + h_b y'(-1) &= 0. \end{aligned} \] Die Funktion $y(x)$ und $y'(x)$ sind in diesem Fall die Tschebyscheff Polynome (siehe \ref{sub:definiton_der_tschebyscheff-Polynome}). Es gibt zwei Arten von Tschebyscheff Polynome: die erste Art $T_n(x)$ und die zweite Art $U_n(x)$. Jedoch beachtet man in diesem Kapitel nur die Tschebyscheff Polynome erster Art (\ref{eq:tschebyscheff-polynome}). Die Funktion $y(x)$ wird nun mit der Funktion $T_n(x)$ ersetzt und für die Verifizierung der Randbedingung wählt man $n=2$. Somit erhält man \[ \begin{aligned} k_a T_2(-1) + h_a T_{2}'(-1) &= k_a = 0\\ k_b T_2(1) + h_b T_{2}'(1) &= k_b = 0. \end{aligned} \] Ähnlich wie beim Beispiel der Wärmeleitung in einem homogenen Stab können, damit die Bedingung $|k_i|^2 + |h_i|^2\ne 0$ erfüllt ist, beliebige $h_a \ne 0$ und $h_b \ne 0$ gewählt werden. Somit ist erneut gezeigt, dass die Randbedingungen der Tschebyscheff-Polynome auch die Sturm-Liouville-Randbedingungen erfüllt und alle daraus resultierenden Lösungen orthogonal sind.