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Introduction. The problem of integration in finite terms asks for an 
algorithm for deciding whether an elementary function has an ele
mentary indefinite integral and for finding the integral if it does. 
"Elementary" is used here to denote those functions built up from 
the rational functions using only exponentiation, logarithms, trig
onometric, inverse trigonometric and algebraic operations. 

This vaguely worded question has several precise, but inequivalent 
formulations. The writer has devised an algorithm which solves the 
classical problem of Liouville. A complete account is planned for a 
future publication. The present note is intended to indicate some of 
the ideas and techniques involved. 

Basic notions. We will deal exclusively with differential fields 3D of 
characteristic zero; a differential field being a field endowed with a 
unary operation ' which satisfies the sum and product rule for deriva
tives. 3D has a differential subfield Kt called the constant field of 3D. 
I t consists of all a G 3D such that a! = 0. 

If 3) is a differential subfield of $, then ^ (and any /G*?) is said to 
be elementary over 3D iff 3F = 3D(0i, • • • , 0n) where each 0t- satisfies a t 
least one of the following conditions: 

(1) 6i is algebraic over 3D(0i, • • • , 0,~i), 
(2) 9'i/di•=ƒ' for some/G3D(0x, • • • , 0i_i) (the exponential case), 
(3) f/f=0't for some ƒ G 3D (0i, • • • , 0*_i) (the logarithmic case). 
If in (2) or (3) 0t- is transcendental over 3D(0i, • • • , 0,_i) and the 

constant field of 3D(0i, • • • ,0;_i) is the same as that of 3D(0i, • • • , 0*), 
then 0» is a monomial over 3D(0i, • • • , 0t-x). If each 0* is either alge
braic or a monomial over £)(0i, • • • , 0t-i) then # is regular elementary 
over 3D. 

(1), (2) and (3) are all the operations needed since we get the 
trigonometric and inverse trigonometric operations by adjoining 
V ( - l ) toK. 

The following basic result gives us the form assumed by elementary 
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functions that have elementary indefinite integrals. For a proof see 
[8, p. 171]. 

LIOUVILLE'S THEOREM. Let $ be a differential field with an algebrai
cally closed constant field K. Let / G ^ and g be elementary over $ with 
g' =ƒ. Then there are i/0, »i, • • • , vk in SF and ci, • • • , Ck in K such that 

f=Vf
0+J2CiVi/Vi-

Brief description of the algorithm. For a differential field of the 
type $ = K(z> 0i, • • • , dm) where K is the constant field of 3r, K being 
algebraically closed and of finite transcendence degree over Q, z' = 1 
with SF regular elementary over K(z), the integration algorithm 
gives a method for determining whether a given ƒ G ^ can be repre
sented in the form v'0+ ^Civf /vt, the v/s being in $ and the c/s in K. 

The algorithm proceeds by induction on the number of monomials 
used in constructing a tower from K(z) to 9r. Let 3D be elementary 
over K(z) where m — 1 monomials are used in a tower from K(z) to 3}. 
The induction hypothesis assumes that we can decide the elementary 
integrability of elements of 3D and also tell if a first order linear differ
ential equation with coefficients in 3D, having certain constant param
eters, has a solution in 3D. 

Now let 0 be a monomial over 3D, w be algebraic over 3D(0) and ƒ G F̂ 
where 9: = 3D(0, w). We examine the equation f=v'0+

y%2ctVi/vi at a 
finite set (determined by ƒ) of 3D-places of 9\ Using the induction 
hypothesis, certain necessary conditions are obtained for the v's 
occurring in a suitable Liouville representation of $; namely, a 
principal part system for VQ and divisors öit i = l, • • • , k such that 
(Vi) is a power of ô». The ZJ'S, if they exist, can be determined up to 
additive or multiplicative elements of 3D. Then the problem is reduced 
to studying an equation fi = d'0+^2cidi /di where f% and the d's are 
in 3D. 

The case $ = K(z, 0i, • • • , 6m) where each 0,- is a monomial over 
K (zy 0i, • • • , 0f-_i) was treated in detail in [8]. All the algebraic func
tion fields involved are rational and the above method reduces to a 
generalization of the usual partial fraction method used for integrat
ing elements of K(z). 

In all the foregoing it is assumed that one has an explicit trans
cendance basis for the field K so problems dealing with transcendental 
numbers are avoided. For example, since there is no known method 
that tells for an arbitrary r £ Q whether ee = r, there is no known 
general method for telling if an integral of the form f(ee — r)ez* is 
elementary. 

The restriction to regular elementary extensions of K(z) avoids 
adjoining new transcendental constants and also prevents certain 
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insurmountable difficulties associated with the multiple valued char
acter of the logarithm function. (Cf. [8, Proposition 2.2].) 

Integration and torsion on the Jacobian variety. The most surpris
ing aspect of the integration problem is the fact (implicit in the above) 
that it reduces to the problem of bounding torsion on the Jacobian 
variety of an algebraic curve. We will explain this more fully for the 
case of Abelian integrals, i.e., integration of elements of $f = K(z, w), 
where ƒ(0, w) = 0, ƒ being a polynomial with coefficients in K. 

The following can be derived from Liouville's theorem : 
Let co be a differential of 9r. Let ri, • • • , fk be a basis for the Z module 
generated by the residues of co. Thus at each K-place p> ReSp(co) = 
a>iPri+ - • - +akPrk, aipÇ:Z. Let the divisor St- be given by YLP Paip' Sup
pose fœ is elementary. Then there are Vo, • • • , Vk in $ and integers j i , 

• • • , jk such that ôJi= (vi) and œ = dv0+ ]T)*-i (ri/J<)(d>Vi/vi). 
All of the divisors ô* and also the coefficients of ƒ will be rational 

over a field k(ZK, k being finitely generated over Q. Thus we can 
work with the field k(z,w). If B is a bound for the order of the torsion 
subgroup of the Jacobian variety of k(z, w), then it can be assumed 
that each ji^B. Then one must test to see if any of ô,-, ôf, • * • , ôf 
is principal. Either the classic arithmetic or geometric theories of 
algebraic functions give constructive criteria for the latter question. 
E.g. [l, Chapter I I I ] . 

In the above special case of Abelian integrals, the fact that inte
gration reduces to divisor testing was first explicitly (albeit, somewhat 
obliquely) stated by Goursat in 1894 [5, p. 516]. At that time the 
problem was considered exceedingly difficult or even undecidable 
(before Gödel!). See the remarks of Halphen [6, last page], Goursat 
[5, p. 516], and Hardy [7, pp. 8-11, 47-48, 52]. The only criteria 
they considered was the highly nonconstructive one given by Abel's 
theorem. 

A bound for the torsion. I t has been conjectured that there is a 
universal bound, depending only on the genus and the ground field for 
torsion on the Jacobian variety of an algebraic curve defined over a 
finitely generated field k. (See [2, p. 264] for some discussion of the 
elliptic curve case.) When integrating a given elementary function, 
one needs only to be able to find the bound for an explicitly given 
curve. This can be done using things now in the repertory of arith
metical algebraic geometry. One method is outlined below. 

Let C be a nonsingular, projective model of an absolutely irreduc
ible algebraic curve defined over k. Since k is finitely generated over 
the rationals, it can be embedded in a finite algebraic extension of the 
p-adic numbers. C can then be reduced mod w where TT is a valuation 
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of k, extending the p-adic valuation of Q. We wish this reduction to 
be "good" Tha t is, a finite set of forms defining a generic point for C 
should reduce mod w to a set of forms that also give a nonsingular, 
absolutely irreducible curve Cl. A sufficient condition for this is that 
7T be constructed so that ord»(i8i)è0 for a certain set of elements 
|8i • • • ft of k with ord,(/3i) = 0 . 

In a good reduction, the group of divisor classes on C, of finite order 
I, where (/, p) = 1, p being the characteristic of the residue class field, 
is injected into the corresponding group on C1. This last assertion 
follows from Shimura's result [9, Proposition 16, p. 98], if we note 
that the good reduction can be extended to one from g{C) to ^(C1), 
these being the corresponding Chow models of the Jacobian [3, p. 
651]. 

Thus we will have a bound for the torsion if we can find the class 
numbers of two good reductions C1 and C2 which are defined over 
residue class fields of different characteristics. But this can be ob
tained using the rationality formula for the zeta function [4, Chapter 
V, §§5.1, 5.2]. 

I would like to express my indebtedness to Professor James Ax for 
his advice and suggestions during the writing of this note. I would 
also like to thank Professor Goro Shimura for information concerning 
good reduction. 
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