% % beta.tex -- slide template % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \bgroup \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Beta-Verteilung} \vspace{-20pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.40\textwidth} \begin{block}{Ordnungsstatistik} \begin{align*} \varphi(x) &= {\color{blue}N} x^{k-1} (1-x)^{n-k} \\ &\uncover<8->{ = \beta_{k,n-k+1}(x) } \end{align*} \end{block} \uncover<8->{% \begin{block}{Risch-Algorithmus} Die Beta-Verteilungen haben ausser in Spezialfällen keine Stammfunktion in geschlossener Form. \end{block}} \end{column} \begin{column}{0.56\textwidth} \uncover<2->{% \begin{definition} Beta-Verteilung \[ \beta_{a,b}(x) = \begin{cases} \displaystyle \uncover<7->{ {\color{blue} \frac{1}{B(a,b)} } } x^{a-1}(1-x)^{b-1} &0\le x\le 1 \\ 0&\text{sonst} \end{cases} \] \end{definition}} \uncover<3->{% \begin{block}{Normierung} \begin{align*} {\color{blue}\frac{1}{{N}}} &\uncover<4->{= \int_{-\infty}^\infty \beta_{a,b}(x)\,dx} \\ &\uncover<5->{= \int_{0}^1 x^{a-1}(1-x)^{b-1}\,dx} \\ &\uncover<6->{= B(a,b)} \end{align*} \end{block}} \end{column} \end{columns} \end{frame} \egroup