% % dichte.tex -- Wahrscheinlichkeitsdichte % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \bgroup \definecolor{darkgreen}{rgb}{0,0.6,0} \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Wahrscheinlichkeitsdichte} \vspace{-20pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.40\textwidth} \begin{block}{Definition} \[ \varphi_{X_{k:n}}(x) = \frac{d}{dx} F_{X_{k:n}}(x) \] \end{block} \end{column} \begin{column}{0.60\textwidth} \uncover<4->{% \begin{block}{Gleichverteilung} \[ {\color{darkgreen}F(x)}=\begin{cases} 0&x \le 0\\ x&0\le x \le 1,\\ 1&x\ge 1 \end{cases} \quad \uncover<5->{ {\color{red}\varphi(x)} = \begin{cases} 1&0\le x \le 1\\ 0&\text{sonst} \end{cases}} \] \end{block}} \end{column} \end{columns} \uncover<2->{% \begin{block}{Ordnungsstatistik} nach einiger Rechnung: \begin{align*} \varphi_{X_{k:n}}(x) &= {\color<3->{red}\varphi_X(x)}\,k\binom{n}{k}{\color<3->{darkgreen}F_X(x)}^{k-1} (1-{\color<3->{darkgreen}F_X(x)})^{n-k} \intertext{\uncover<4->{für Gleichverteilung}} \uncover<6->{ \varphi_{X_{k:n}}(x) &= \begin{cases} \displaystyle {\color<7->{blue}k\binom{n}{k}}{\color{darkgreen}x}^{k-1}(1-{\color{darkgreen}x})^{n-k} &0\le x \le 1\\ 0&\text{sonst} \end{cases} \qquad\uncover<7->{\text{({\color{blue}Normierung})}} } \end{align*} \end{block}} \end{frame} \egroup