% % numerik.tex -- numerische Berechnung der Fresnel Integrale % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \bgroup \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Numerik} \vspace{-20pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.48\textwidth} \begin{block}{Taylor-Reihe} \begin{align*} \sin t^{\uncover<2->{\color<2>{red}2}} &= \sum_{k=0}^\infty (-1)^k \frac{t^{ \ifthenelse{\boolean{presentation}}{\only<1>{2k+1}}{} \only<2->{\color<2>{red}4k+2} } }{ (2k+1)! } \\ %\int \sin t^2\,dt \uncover<4->{ S_1(t) &= \sum_{k=0}^\infty (-1)^k \frac{t^{4k+3}}{(2k+1)!(4n+3)} } \\ \cos t^{\uncover<3->{\color<3>{red}2}} &= \sum_{k=0}^\infty (-1)^k \frac{t^{ \ifthenelse{\boolean{presentation}}{\only<-2>{2k}}{} \only<3->{\color<3>{red}4k}} }{ (2k)! } \\ %\int \sin t^2\,dt \uncover<5->{ C_1(t) &= \sum_{k=0}^\infty (-1)^k \frac{t^{4k+1}}{(2k)!(4k+1)} } \end{align*} \end{block} \end{column} \begin{column}{0.48\textwidth} \uncover<6->{ \begin{block}{Differentialgleichung} \[ \dot{\gamma}_1(t) = \begin{pmatrix} \cos t^2\\ \sin t^2 \end{pmatrix} \uncover<7->{ \; \to \; \gamma_1(t) = \begin{pmatrix} C_1(t)\\S_1(t) \end{pmatrix} } \] \end{block}} \uncover<8->{% \begin{block}{Hypergeometrische Reihen} \begin{align*} \uncover<9->{% S(t) &= \frac{\pi z^3}{6} \cdot \mathstrut_1F_2\biggl( \begin{matrix}\frac34\\\frac32,\frac74\end{matrix} ; -\frac{\pi^2z^4}{16} \biggr) } \\ \uncover<10->{ C(t) &= z \cdot \mathstrut_1F_2\biggl( \begin{matrix}\frac14\\\frac12,\frac54\end{matrix} ; -\frac{\pi^2z^4}{16} \biggr)} \end{align*} \end{block}} \end{column} \end{columns} \uncover<11->{% \begin{block}{Komplexe Fehlerfunktion} \[ \left. \begin{matrix} S(z)\\ C(z) \end{matrix} \right\} = \frac{1\pm i}{4} \left( \operatorname{erf}\biggl({\frac{1+i}2}\sqrt{\pi}z\biggr) \mp i \operatorname{erf}\biggl({\frac{1-i}2}\sqrt{\pi}z\biggr) \right) \] \end{block}} \end{frame} \egroup