% % normalhermite.tex -- integrability of hermite polynomials % % (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule % \bgroup \begin{frame}[t] \setlength{\abovedisplayskip}{5pt} \setlength{\belowdisplayskip}{5pt} \frametitle{Hermite-Polynome} \vspace{-20pt} \begin{columns}[t,onlytextwidth] \begin{column}{0.48\textwidth} \begin{block}{Definition (Rodrigues-Formel)} \[ H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} \] \end{block} \vspace{-10pt} \uncover<2->{% \begin{block}{Orthogonalität} $H_n(x)$ sind orthogonale Polynome bezüglich $w(x)=e^{-x^2}$, d.~h. \begin{align*} \langle H_n,H_m\rangle_w &= \int H_n(x)H_m(x)e^{-x^2}\,dx \\ &= \biggl\{ \renewcommand{\arraycolsep}{1pt} \begin{array}{l@{\quad}l} 1&\text{falls $n=m$}\\ 0&\text{sonst} \end{array} \biggr\} = \delta_{mn} \end{align*} \end{block}} \vspace{-10pt} \uncover<3->{% \begin{block}{Rekursion: Auf-/Absteigeoperatoren} Rekursionsformel: \[ H_n(x) = 2x\cdot H_{n-1}(x) - H_{n-1}'(x) \] \end{block}} \end{column} \begin{column}{0.48\textwidth} \uncover<4->{% \begin{block}{Stammfunktion} \begin{align*} \uncover<4->{ \int H_n(x) e^{-x^2}\,dx} &\uncover<5->{= \int \bigl({\color{red}2x}H_{n-1}(x)} \\ \uncover<5->{ &\qquad -H_{n-1}'(x)\bigr) e^{-x^2}\,dx } \\ \uncover<6->{ {\color{gray}((e^{-x^2})'=-2x)} &= {\color{red}-}\int {\color{red}(e^{-x^2})'} H_{n-1}(x)\,dx } \\ \uncover<6->{ &\qquad - \int H_{n-1}'(x) e^{-x^2}\,dx } \\ \uncover<7->{ \text{\color{gray}(Produktregel)} &= \int (e^{-x^2}H_{n-1}(x))'\,dx } \\ \uncover<8->{ \text{\color{gray}(Ableitung)} &= e^{-x^2}H_{n-1}(x) } \end{align*} \uncover<9->{% ausser für $n=0$: \[ \int H_0(x)e^{-x^2}\,dx = \int e^{-x^2}\,dx \]} \end{block}} \end{column} \end{columns} \end{frame} \egroup