
DigDes: Digital Design
Naoki Pross – naoki.pross@ost.ch

Spring Semester 2021

Abstract
This document is “open source”, you can find the LATEX sources at https://github.com/NaoPross/

DigDes. All diagrams were made with TikZ. The content is based on the material of Prof. Dr. Zbinden,
from the course Digital Design at the University of Applied Sciences Eastern Switzerland (OST). If you find
typos or errors you can open an PR on Github or mail me at naoki.pross@ost.ch if I’m still around (until
spring 2022) or np@0hm.ch.

Contents
1 Development model 1

2 VHSIC Hardware Description Language (VHDL) 1
2.1 Basic syntax and identifiers . 1
2.2 Structure and Libraries . 1
2.3 Entities and Architectures . 1
2.4 Type system . 2

2.4.1 Electric types . 2
2.4.2 Arithmetic types . 2
2.4.3 Array type . 2
2.4.4 Custom enumeration types . 2
2.4.5 Physical types . 2
2.4.6 Reisizing vectors . 3
2.4.7 Type casting and conversion . 3

2.5 Declarations . 3
2.6 Concurrent Area . 4

2.6.1 Signal assignment and simple gates . 4
2.6.2 Aggregates . 4
2.6.3 Selective and conditional assignment . 4
2.6.4 Components . 4
2.6.5 Processes . 4

2.7 Pitfalls and RTL model . 5
2.8 Generic Parameters . 5

2.8.1 Generic entity and declaration . 5
2.8.2 Generic mapping (Concurrent Area) . 5

3 State Machines 6
3.1 Encoding the state . 6
3.2 Updating the state register (Z) . 6
3.3 Updating the state (G) . 6
3.4 Updating the output (F) . 6

4 Testing 7
4.1 Simulator . 7
4.2 Transport delay . 7
4.3 Generate stimuli . 7
4.4 Assertions . 7

5 Samples / Templates 7

License

This work is licensed under a Creative Commons “Attribution-NonCommercial-
ShareAlike 4.0 International” license.

i

https://github.com/NaoPross/DigDes
https://github.com/NaoPross/DigDes
mailto:naoki.pross@ost.ch
mailto:np@0hm.ch
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

1 Development model
The workflow for the development is show in figure 1.
In the Gajski-Kuhn Y-model has 3 axis for the per-
spectives of the product. It is typical to start from the
behavioral axis, by treating the systems as a black-box,
and then to jump back and forth between the other axis
while gravitating towards the origin (project goal).

Electrical

Logic gates

Register transfer

Architecture

System

Structural
Perspective

Transistors, Wires
Gates, Latches, Flip-Flops

ALUs, Registers, Memories
Subblocks

Top blocks, I/O

Behavioral
Perspective

Transfer functions
Truth tables, State graphs

Data moves and operations
Subtasks

Algorithm

Physical
Perspective

Mask polygons, Detailed layout

Standard cells, Macro cells

Placement and routing

Floorplan partitioning

Chip or board

Figure 1: Gajski-Kuhn Y-chart.

Figure 2 shows a typical flow diagram of how an
ASIC device is designed.

2 VHSIC Hardware Description
Language (VHDL)

2.1 Basic syntax and identifiers
In VHDL an identifier is a case insensitive string com-
posed of A-Z a-z 0-9 _ that

• is not a keyword,
• does not start with a number or _,
• does not have two or more _ in a row.

Expressions are terminated by a semicolon ;. Two
dashes in a row cause the rest of the line to be in-
terpreted as a comment.

1 expression; -- comment

2.2 Structure and Libraries
The VHDL code is organized into libraries declared
with the library keyword. The library of your code is
called work, standard features (bit, integer, …) are
found in std, and IEEE standard parts are in ieee.
work and std are always implicit and must not be de-
clared.

1 library 〈 library name 〉;

Design
Description

Testbench
Description

Functional
Simulation

Synthesis &
Optimization

Standard
Elements

Technology
Mapping

Test
Synthesis

Gates Prelayout
Simulation

Layout Postlayout
Simulation

Hardware
Technology
Library

Te
ch

no
lo

gy
In

di
pe

nd
en

t
Te

ch
no

lo
gy

De
pe

nd
en

t

Figure 2: Design flow for an ASIC device.

Once declared a library is composed of packages, which
can contain elements (constants, entities, …). To access
the elements the syntax is

1 〈 library 〉.〈 package 〉.〈 element 〉;

To avoid having to write a long name every time it is
possible to import names using

1 use 〈 library 〉.〈 element or all 〉;
2 use 〈 library 〉.〈 package 〉.〈 element or all 〉;

2.3 Entities and Architectures
In VHDL the concept of entity describes a black box of
which only inputs and outputs are known. The inter-
nals of an entity are described through an architecture.
There can be multiple architectures for a single entity.

Entities are declared with port() that may contain
a list of pins. Pins have a mode that can be in input
(only LHS1), out output (only RHS2), inout bidirec-
tional or buffer that can stay both on LHS and RHS.
The usage of the latter is discourareged in favour of an
internal signal.

1 entity 〈 name 〉 is
2 port(
3 〈 pin 〉 : 〈 mode 〉 〈 type 〉;
4 [more pins];
5 〈 pin 〉 : 〈 mode 〉 〈 type 〉

1Left hand side
2Right hand side

1

Entity

Architecture 1

Architecture 2

Architecture 3

Pin

Figure 3: An entity is a black box, that can have mul-
tiple architectures.

6);
7 end entity [name];

Architectures are normally named after the design
model, examples are behavioral, structural.

1 architecture 〈 name 〉 of 〈 entity 〉 is
2 -- declare used variables , signals and

↪→ component types
3 begin
4 -- concurrent area
5 end architecture [name];

2.4 Type system
2.4.1 Electric types

VHDL provides some types such as

• boolean true or false,
• bit 0 or 1,
• bit_vector one dimensional array of bits,
• integer 32-bit binary representation of a value.

From external (standard) libraries other types are avail-
able:

• std_logic advanced logic with 9 states,
• std_ulogic same as the previous but unresolved.

The above are from the ieee.std_logic_1164 library,
and can take the values described in table 1. For the
resolved types, i.e. std_logic types, when a signal is
multiply driven the conflict is resolved according to
table 2. Unresolved types will give a synthesization
error. A good example is a tri-state bus:

1 architecture tristate of buscontrol is
2 begin
3 bus_read: inp <= bus_io;
4
5 bus_write: process(enable, oup)
6 begin
7 bus_io <= (others => 'Z');
8 if enable = '1' then
9 bus_io <= oup;

10 end if;
11 end process;
12 end architecture tristateout;

Value Meaning Usage
U Uninitialized In the simulator
X Undefined Simulator sees a bus

conflict
0 Force to 0 Low state of outputs
1 Force to 1 High state of outputs
Z High Impedance Three state ports
W Weak Unknown Simulator sees weak a

bus conflict
L Weak Low Open source outputs

with pull-down resistor
H Weak High Open drain output with

pull-up resistor
- Don’t care Allow minimization

Table 1: Possible values for std_logic signals.

U X 0 1 Z W L H -

U U U U U U U U U U
X U X X X X X X X X
0 U X 0 X 0 0 0 0 X
1 U X X 1 1 1 1 1 X
Z U X 0 1 Z W L H X
W U X 0 1 W W W W X
L U X 0 1 L W L W X
H U X 0 1 H W W H X
- U X X X X X X X X

Table 2: Resolution table when a std_logic signal is
multiply driven.

2.4.2 Arithmetic types

For arithmetic operations two more types signed and
unsigned (as well as their unresolved equivalents u_signed
and u_unsigned) can be imported (together with many
others for ex. natural) from the library ieee.numeric_std.
Arithmetic types support the operations in table 3.

2.4.3 Array type

Arrays types (fields) of other types can be define with
the following.

1 type 〈 name 〉 is array (〈 upper
limit 〉 downto 〈 lower limit 〉) of 〈 base type 〉;

2.4.4 Custom enumeration types

It is possible to create custom types, usually to create
state machines.

1 type 〈 name 〉 is (〈 identifier 〉, 〈 identifier 〉, …);

2.4.5 Physical types

For variables that represent physical dimensions it is
possible to create values with units with the following:

1 type 〈 name 〉 is range 〈 min 〉 to 〈 max 〉
2 units

2

Syntax Operator Note
+ Addition
- Subtraction

abs() Absolute value
* Multiplication
/ Division Typically not available
** Power Only powers of 2
mod Modulo Only modulo of 2k
rem Remainder Only of division by 2k

= Equality
/= Inequality
<, > Lower, greater

<=, >= Lower, greater
or equal

Same the assignment
operator, however it is
always clear from con-
text.

Table 3: Arithmetic operations from the numeric_std
library.

3 〈 base unit 〉;
4 [multiples of base unit];
5 end units;

for example:
1 type CAPACITANCE is range 0 to 1E30
2 units
3 pf;
4 nf = 1000 pf;
5 uf = 1000 nf;
6 mf = 1000 uf;
7 end units;

2.4.6 Reisizing vectors

VHDL has a function
1 function resize(arg: signed; new_size:

↪→ natural) return signed;

that allow to reisze vector types. When resizing a vec-
tor of signed type to a higher number of bits the resize
function cleverly fills the extra bits 1s or 0s to not mess
up the two’s complement. Toghether with the resize
function an often used feature is the 'length attriubte,
that returns the size (in bits) of the identifier.

1 y <= resize(a, y'length);

2.4.7 Type casting and conversion

When two signals have the same underlying type it is
always possible to perform a type cast using the follow-
ing syntax.

1 〈 destination 〉 = 〈 type name 〉(〈 source 〉);

For example:
1 architecture behavoral of cast_example
2 signal a_int, b_int :
3 std_logic_vector(3 downto 0);
4 signal s_int : unsigned(3 downto 0);
5 begin

6 s_int <= unsigned(a_int)
7 + unsigned(b_int);
8 end architecture;

When the conversion is between signals with a different
underlying type it is a (potentially lossy) type conver-
sion. The syntax for a conversion is:

1 〈 destination 〉 = to_〈 type name 〉(〈 source 〉);

array types

std_logic_vector

signed unsigned

integer

signed() unsigned()
std_logic_vector()

to_integer()

to_signed(〈 v 〉,〈 len 〉)

to_unsigned(〈 v 〉,〈 len 〉)

unsigned()

signed()

2.5 Declarations
Before a begin – end block, there is usually a list of
declarations. A self evident examples are constants.

1 constant 〈 name 〉 : 〈 type 〉 := 〈 value 〉;

Next, signals and variables. Signals is are wires,
they can only be connected and do not have an initial
state. Variables can be assigned like in software, but
can cause the synthesization of an unwanted D-Latch.

1 signal 〈 name 〉, [name, …] : 〈 type 〉;
2
3 variable 〈 name 〉, [name], […] : 〈 type 〉;
4 variable 〈 name 〉 : 〈 type 〉 := 〈 expression 〉;

For the hierarchical designs, when external entities
are used, they must be declared as components. The
port() expression must match the entity declaration.

1 component 〈 entity name 〉 is
2 port(
3 [list of pins]
4);
5 end component;

For entities with multiple architectures, it is possible
to choose which architecture is used with the following
expression.

1 for 〈 label or all 〉: use entity 〈 library 〉.
↪→ 〈 entity 〉(〈 architecture 〉);

3

Architecture

clk

a

b

y
Process

Component
(entity)

Logic
Gate

Figure 4: In the concurrent area statements are not
interpreted sequentially.

2.6 Concurrent Area
In the architecture between begin and end, the expres-
sions are not read sequentially, everything happens at
the same time. Statements inside the concurrent area
optionally have a label.

1 [label]: 〈 concurrent statement 〉;

In the concurrent area signals, components and pro-
cesses can be used to create a logic.

2.6.1 Signal assignment and simple gates

Signals are assigned using <=.
1 [label]: 〈 signal 〉 <= 〈 expression 〉;

Simple logic functions such as not, and, or, xor, etc.
can be used.

1 y <= (a and s) or (b and not(s));

2.6.2 Aggregates

For vector types it is possible to create a value out of
multiple signals.

1 〈 vector 〉 <= (
2 〈 index 〉 => 〈 source or value 〉,
3 〈 index 〉 => 〈 source or value 〉,
4 [others] => 〈 source or value 〉
5);

1 -- declaration
2 signal data : bit_vector(6 downto 0);
3 signal a, b : bit;

1 -- concurrent
2 data = (1 => a, 0 => b, others => '0')

2.6.3 Selective and conditional assignment

Higher level conditions can be written in two ways.
1 -- using when
2 [label]: y <= 〈 source 〉 when 〈 condition 〉 else
3 〈 source 〉 when 〈 condition 〉 else
4 〈 source 〉 when 〈 condition 〉;

1 -- using with
2 [label]: with 〈 signal 〉 select 〈 dest 〉 <=
3 〈 source 〉 when 〈 value 〉,
4 〈 source 〉 when 〈 value 〉,
5 〈 source 〉 when others;

2.6.4 Components

External components that have been previously de-
clared can be used with the port map(〈 assignments 〉)
syntax. For example:

1 -- declaration
2 component flipflop is
3 port(
4 clk, set, rst : in std_ulogic ,
5 Q, Qn : out std_ulogic
6);
7 end component flipflop;
8
9 signal clk_int, a, b : in std_ulogic;

10 signal y, z : out std_ulogic;

1 -- concurrent
2 u1: component flipflop
3 port map(
4 clk => clk_int,
5 set => a,
6 rst => b,
7 Q => y,
8 Qn => z
9);

2.6.5 Processes

For more sophisticated logic VHDL offers a way of writ-
ing sequential statements called process.

1 [label]: process ([sensitivity list])
2 -- declarations
3 begin
4 -- sequential statements
5 end process;

Processes have a sensitivity list that can be empty.
When a signal in the sensitivity list changes state, the
process is executed. With an empty sensitivity list, the
process runs continuously. In the declaration, every-
thing from §2.5 applies. For the sequential statements,
the following applies:

• Neither selective (with) nor conditional (when)
should be used. They are replaced with new se-
quential constructs (if and case).

• Signal assignments (with <=) change their value
only at the next wait for statement or at the end
of the process.

• Variables on the other hand change as soon as
they are assigned (with :=).

And for good practice:

• Before any if or case default values should be
assigned.

• Any signal on the RHS should be in the sensitiv-
ity list.

4

• Processes with empty sensitivity lists should only
be used for simulations.

The sequential replacements for with and when are
in the listings below.

1 if 〈 condition 〉 then
2 -- sequential statements
3 elsif 〈 condition 〉 then
4 -- sequential statements
5 else
6 -- sequential statements
7 end if;

1 case 〈 expression 〉 is
2 when 〈 choice 〉 =>
3 -- sequential statements
4 when 〈 choice 〉 =>
5 -- sequential statements
6 when others =>
7 -- sequential statements
8 end case;

Processes can detect attributes of signals. Typically
it is used for clocks. There are also other attributes
such as s'stable(t).

1 process (clk)
2 begin
3 -- rising edge
4 if clk'event and clk = '1' then
5 ... end if;
6 if rising_edge(clk) then
7 ... end if;
8
9 -- falling edge

10 if clk'event and clk = '0' then
11 ... end if;
12 if falling_edge(clk) then
13 ... end if;
14 end process;

2.7 Pitfalls and RTL model
Coming from a programming language, a common pit-
fall is to write something like

1 -- wrong!!!
2 y <= y xor a;

=1a
y

but this will be synthesised into an oscillating circuit,
that must be avoided at all costs. The correct way
is to have a memory for the next state, with a logic
separated into combinatorial and sequential parts.

1 -- combinatorial
2 y_next <= y xor a;
3 -- sequential
4 process (clk)
5 begin
6 if rising_edge(clk) then
7 y <= y_next;
8 end if;
9 end process;

This method is known as register transfer level design.

2.8 Generic Parameters
Sometimes a group of components have a very similar
structure, so instead of rewriting multiple similar inter-
faces it is desirable to have parameters and a generic
entity, for example in the case of a binary counter’s
range. To solve the problem using signals with con-
ditional statements would generate unnecessary hard-
ware, while constants cannot change the entity’s port.
Thus there is a syntax:

1 generic(
2 〈 param name 〉 : 〈 type 〉 := 〈 initial value 〉;
3 [more parameters];
4 〈 param name 〉 : 〈 type 〉 := 〈 initial value 〉
5);

that has effect at synthesization time.

2.8.1 Generic entity and declaration

Entities are parametrized as follows.
1 entity 〈 name 〉 is
2 generic(〈 parameters 〉);
3 port(〈 pins 〉);
4 end entity 〈 name 〉;

For example:
1 entity counter is
2 generic(CNT_MAX : natural := 127);
3 port(
4 clk, rst, ena : in std_logic;
5 -- adjust to a power of 2
6 count : out std_logic_vector(
7 (natural(ceil(
8 log2(real(CNT_MAX +1)))) -1)
9 downto 0);

10 end entity;

And in the architecture it is possible to access generic
values in a similary way. Another example is a clock
divider.

1 entity clockdivider is
2 generic(DIV_FACTOR : natural := 128);
3 port(...);
4 end entity;
5
6 architecture RTL of clockdivider is
7 signal cnt, cnt_next : natural range 0

↪→ to (DIV_FACTOR -1);
8 ...

2.8.2 Generic mapping (Concurrent Area)

To map a generic entity into a structural design the
syntax is extended accordingly with generic map().

1 -- definition
2 component 〈 generic entity 〉 is
3 generic(〈 parameters 〉);
4 port(〈 pins 〉);
5 end component;

1 [label]: component 〈 generic component 〉
2 generic map(

5

3 〈 parameter 〉 => 〈 constant or parameter 〉,
4 ...
5);
6 port map(
7 〈 pin 〉 => 〈 signal or pin 〉,
8 ...
9);

3 State Machines

G

F

Z

Mealey

oup

inp

G

F

Z

Moore

oup

inp

G

Z

Medwedjew
oup

inp

3.1 Encoding the state
For Mealey and Moore machines it is typical to write:

1 type state_type is (st_rst, st_a, st_b,
↪→ st_c, ...);

2 signal present_state , next_state :
↪→ state_type;

The encoding of the state is left to the synthesizer or
can be configured in the graphical interface of the tool.
If a custom encoding is required (Medwedjew), adding
the following generates a custom encoding.

1 attribute enum_encoding : string;
2 attribute enum_encoding of state_type:
3 type is "0001 0010 0100 ...";

Or an equivalent approach is to use a vector subtype
and constants.

1 subtype state_type is bit_vector(3 downto
↪→ 0);

2
3 constant st_rst : state_type := "0001";
4 constant st_a : state_type := "0010";
5 constant st_b : state_type := "0100";
6 ...
7
8 signal present_state , next_state :

↪→ state_type;

3.2 Updating the state register (Z)

1 register_logic: process (clk, rst)
2 begin
3 -- asynchronous reset
4 if rst = '1' then
5 present_state <= st_rst;
6
7 -- clock
8 elsif rising_edge(clk) then
9 present_state <= next_state;

10 end if;
11 end process;

3.3 Updating the state (G)

1 next_state_logic:
2 process (present_state , [inputs])
3 begin
4 -- default value
5 next_state <= state_rst;
6
7 case present_state is
8 when st_rst =>
9 -- reset state logic

10 next_state <= 〈 state 〉;
11
12 when st_a =>
13 -- logic using inputs
14 next_state <= 〈 state 〉;
15
16 ...
17 when others => null;
18 end case;
19 end process;

3.4 Updating the output (F)
Mealey

1 output_logic:
2 process (present_state , 〈 inputs 〉)
3 begin
4 -- logic with state and inputs
5 〈 output 〉 <= 〈 expression 〉;
6 end process;

Moore
1 output_logic: process (present_state)
2 begin
3 case present_state is
4 when st_rst =>
5 〈 output 〉 <= 〈 value 〉;

6

6
7 ...
8 end case;
9 end process;

Medwedjew
1 output_logic: 〈 output 〉 <= present_state;

4 Testing
To simulate a digial circuit it is possible to write test
benches using VHDL. The code in this section may no
longer be synthetisable, and is usually written by a test
designer.

4.1 Simulator
VHDL simulates digital systems using delta cycles.

4.2 Transport delay
To model a time delay of a signal there are two ways:

1 y <= transport 〈 expression 〉 after 〈 time 〉;
2 y <= inertial 〈 expression 〉 after 〈 time 〉;

When transport is used, the output changes only ex-
actly after the specified time, the simulator simply
waits. With inertial, the output is also delayed, but
only if the input lasts more than the specified time.
This means that for example with a time of 10 ns a
pulse of 5 ns will be ignored. This is much more typi-
cal and realistic, thus when unspecified, after is inter-
preted as inertial ... after.

1 y <= 〈 expression 〉 after 〈 time 〉;

4.3 Generate stimuli
Simple stimuli (signals) are generated using processes.
For example a clock signal done in three ways:

1 -- declaration
2 constant f : integer := 1000;
3 constant T : time := 1 sec/f;
4 signal clk0, clk1, clk2 : std_ulogic;

1 -- concurrent
2 clock0: process
3 begin
4 clk <= '1'; wait for (T/2);
5 clk <= '0'; wait for (T/2);
6 end process;
7
8 clock1: process
9 begin

10 clk1 <= '1';
11 loop
12 wait for (T/2);
13 clk1 <= not clk1;
14 end loop;
15 end process;
16
17 -- lazy way
18 clock2: clk2 <= not clk2 after (T/2);

One time stimuli can be modelled using the following
expression. Note that the time is absolute.

1 tb_sig <= '0',
2 '1' after 20 ns,
3 '0' after 30 ns, -- 10 ns later
4 〈 value 〉 after 〈 time 〉;

Repeating sequences can be created using processes.
1 sequence: process
2 begin
3 tb_sig <= '0';
4 wait for 20 ns;
5 tb_sig <= '1';
6 wait for 10 ns;
7 ...
8 end process;

For loops are also available, and can be synthesised if
they run over a finite range.

1 [label]: for 〈 parameter 〉 in 〈 range 〉 loop
2 -- sequential statements
3 end loop [label];

A concrete example:
1 -- declaration
2 constant n : integer := 3;
3 signal a, b : std_ulogic_vector(n-1

↪→ downto 0);

1 -- sequential
2 for i in 0 to 2**n -1 loop
3 a <= std_ulogic_vector(
4 to_unsigned(i, n));
5 for k in 0 to 2**n -1 loop
6 b <= std_ulogic_vector(
7 to_unsigned(k, n));
8 end loop;
9 end loop;

4.4 Assertions
Assertions are used write tests to check that a signal is
in the correct state.

1 [label]: assert 〈 condition 〉 report 〈 string 〉
↪→ severity 〈 severity 〉;

The report and severity are optional but strongly ad-
vised. The severity can take one of 4 values: note,
warning, error, failure. Simulations can be configured
to stop when an error of the desired severity occurrs.
An example:

1 assert (tb_y = '0') report "error at
↪→ vector 11" severity error;

5 Samples / Templates
Below is a template for a simple VHDL file.

1 library ieee;
2 use ieee.std_logic_1164.all;
3 -- declare entities (§2.3)
4 entity 〈 name 〉 is

7

5 port([pins]);
6 end entity 〈 name 〉;
7 -- declare architectures (§2.3)
8 architecture 〈 name 〉 of 〈 entity name 〉 is
9 -- internal signals (§2.5)

10 -- other components (§2.6.4)
11 -- declare custom types (§3.1)
12 -- variables of custom type (§3.1)
13 begin
14 -- assignments and processes (§2.6)
15 end architecture 〈 name 〉;

And for a test bench
1 library ieee;
2 use ieee.std_logic_1164.all;
3
4 -- declare entities (§2.3)
5 entity 〈 name 〉_tb is
6 -- nothing here
7 end entity 〈 name 〉_tb;
8
9 architecture tb of 〈 name 〉_tb is

10 -- simulator settings
11 constant freq : natural := 〈 frequency 〉;
12 constant T : time := 1 sec / freq;
13
14 -- component of DUT
15 component 〈 name 〉 is
16 port(
17 clk : in std_ulogic;
18 [other I/O]
19);
20 end component 〈 name 〉;
21
22 signal clk_tb : std_ulogic;
23 -- more signals for inputs and outputs
24 begin
25
26 dut: component 〈 name 〉
27 port map(
28 clk => clk_tb;
29 〈 other I/O 〉);
30
31 clk_generator: process
32 -- generate clock (§4.3)
33 clk_tb <= '1'; wait for (T/2);
34 clk_tb <= '0'; wait for (T/2);
35 end process;
36
37 stimuli: process
38 begin
39 -- generate stimuli (§4.3)
40 -- for loops, after, etc.
41 end;
42
43 response: process
44 -- constants for expected outputs
45 begin
46 wait for 0.9 * T;
47 -- assertions (§4.4)
48 wait for T;
49 end process;
50
51 end architecture tb;

8

	Development model
	VHSIC Hardware Description Language (VHDL)
	Basic syntax and identifiers
	Structure and Libraries
	Entities and Architectures
	Type system
	Electric types
	Arithmetic types
	Array type
	Custom enumeration types
	Physical types
	Reisizing vectors
	Type casting and conversion

	Declarations
	Concurrent Area
	Signal assignment and simple gates
	Aggregates
	Selective and conditional assignment
	Components
	Processes

	Pitfalls and RTL model
	Generic Parameters
	Generic entity and declaration
	Generic mapping (Concurrent Area)

	State Machines
	Encoding the state
	Updating the state register (Z)
	Updating the state (G)
	Updating the output (F)

	Testing
	Simulator
	Transport delay
	Generate stimuli
	Assertions

	Samples / Templates

