
DigDes: Digital Design

Naoki Pross – naoki.pross@ost.ch

Spring Semester 2021

Contents
1 Development model and Hardware 2

2 VHSIC Hardware Description Language (VHDL) 2
2.1 Basic syntax and identifiers . 2
2.2 Entities and Architectures . 2
2.3 Electric types and Libraries . 2
2.4 Declarations . 2
2.5 Concurrent Area . 3

2.5.1 Signal assignment and simple gates . 3
2.5.2 Aggregates . 3
2.5.3 Selective and conditional assignment . 3
2.5.4 Components . 3
2.5.5 Processes . 3

2.6 Custom and arithmetic types . 4

3 State Machines 4
3.1 Encoding the state . 4
3.2 Updating the state register (Z) . 4
3.3 Updating the state (G) . 4
3.4 Updating the output (F) . 5

4 Testbench 5

License

This work is licensed under a Creative Commons “Attribution-NonCommercial-
ShareAlike 4.0 International” license.

1

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

1 Development model and Hard-
ware

2 VHSIC Hardware Description
Language (VHDL)

2.1 Basic syntax and identifiers
In VHDL an identifier is a case insensitive string com-
posed of A-Z a-z 0-9 _ that

• is not a keyword,
• does not start with a number or _,
• does not have two or more _ in a row.

Expressions are terminated by a semicolon ;. Two
dashes in a row cause the rest of the line to be in-
terpreted as a comment.

1 expression; -- comment

2.2 Entities and Architectures
In VHDL the concept of entity describes a black box of
which only inputs and outputs are known. The inter-
nals of an entity are described through an architecture.
There can be multiple architectures for a single entity.

Entity

Architecture 1

Architecture 2

Architecture 3

Pin

Entities are declared with port() that may contain
a list of pins. Pins have a mode that can be in in-
put (only LHS), out output (only RHS), inout bidirec-
tional or buffer that can stay both on LHS and RHS.
The usage of the latter is discourareged in favour of an
internal signal.

1 entity 〈 name 〉 is
2 port(
3 〈 pin 〉 : 〈 mode 〉 〈 type 〉;
4);
5 end 〈 name 〉;

Architectures are normally named after the design
model, example are behavioral, structural, selective,
etc.

1 architecture 〈 name 〉 of 〈 entity 〉 is
2 -- declare used variables , signals and

↪→ component types
3 begin
4 -- concurrent area
5 end [name];

2.3 Electric types and Libraries
VHDL provides some types such as

• boolean true or false,
• bit 0 or 1,
• bit_vector one dimensional array of bits,
• integer 32-bit binary representation of a value.

From external libraries other types are available:

• std_logic advanced logic with 9 states,
• std_ulogic

The above are from the ieee.std_logic_1164 library,
and can take the values described in the following table.

Value Meaning Usage
U Uninitialized In the simulator
X Undefined Simulator sees a bus

conflict
0 Force to 0 Low state of outputs
1 Force to 1 High state of outputs
Z High Impedance Three state ports
W Weak Unknown Simulator sees weak a

bus conflict
L Weak Low Open source outputs

with pull-down resistor
H Weak High Open drain output with

pull-up resistor
- Don’t care Allow minimization

2.4 Declarations
Before a begin – end block, there is usually a list of
declarations. A self evident examples are constants.

1 constant 〈 name 〉 : 〈 type 〉 := 〈 value 〉;

Next, signals and variables. Signals is are wires,
they can only be connected and do not have an initial
state. Variables can be assigned like in software, but
can cause the synthesization of an unwanted D-Latch.

1 signal 〈 name 〉, [name, …] : 〈 type 〉;
2
3 variable 〈 name 〉, [name], […] : 〈 type 〉;
4 variable 〈 name 〉 : 〈 type 〉 := 〈 expression 〉;

For the hierarchical designs, when external entities
are used, they must be declared as components. The
port() expression must match the entity declaration.

1 component 〈 entity name 〉 is
2 port(
3 [list of pins]
4);
5 end component;

For entities with multiple architectures, it is possible
to choose which architecture is used with the following
expression.

1 for 〈 label or all 〉: use entity 〈 library 〉.
↪→ 〈 entity 〉(〈 architecture 〉);

2

2.5 Concurrent Area
Architecture

clk

a

b

y
Process

Component
Entity

Logic
Gate

In the architecture between begin and end, the ex-
pressions are not read sequentially, everything happens
at the same time. Statements inside the concurrent
area optionally have a label.

1 [label]: 〈 concurrent statement 〉;

In the concurrent area signals, components and pro-
cesses can be used to create a logic.

2.5.1 Signal assignment and simple gates

Signals are assigned using <=.
1 [label]: 〈 signal 〉 <= 〈 expression 〉;

Simple logic functions such as not, and, or, xor, etc.
can be used.

1 y <= (a and s) or (b and not(s));

2.5.2 Aggregates

For vector types it is possible to create a value out of
multiple signals.

1 〈 vector 〉 <= (
2 〈 index 〉 => 〈 source or value 〉,
3 〈 index 〉 => 〈 source or value 〉,
4 [others] => 〈 source or value 〉
5);

1 -- declaration
2 signal data : bit_vector(6 downto 0);
3 signal a, b : bit;
4 -- concurrent
5 data = (1 => a, 0 => b, others => '0')

2.5.3 Selective and conditional assignment

Higher level conditions can be written in two ways.
1 -- using when
2 [label]: y <= 〈 source 〉 when 〈 condition 〉 else
3 〈 source 〉 when 〈 condition 〉 else
4 〈 source 〉 when 〈 condition 〉;

1 -- using with
2 [label]: with 〈 signal 〉 select 〈 dest 〉 <=
3 〈 source 〉 when 〈 value 〉,
4 〈 source 〉 when 〈 value 〉,
5 〈 source 〉 when others;

2.5.4 Components

External components that have been previously de-
clared can be used with the port map(〈 assignments 〉)
syntax. For example:

1 -- declaration
2 component flipflop is
3 port(
4 clk, set, reset : in std_ulogic ,
5 Q, Qn : out std_ulogic
6);
7 end component flipflop;
8
9 signal clk_int , a, b : in std_ulogic;

10 signal y, z : out std_ulogic;

1 -- concurrent
2 u1: flipflop
3 port map(
4 clk => clk_int ,
5 set => a,
6 reset => b,
7 Q => y,
8 Qn => z
9);

2.5.5 Processes

For more sophisticated logic VHDL offers a way of writ-
ing sequential statements called processes.

1 [label]: process ([sensitivity list])
2 -- declarations
3 begin
4 -- sequential statements
5 end process;

Processes have a sensitivity list that can be empty.
When a signal in the sensitivity list changes state, the
process is executed. With an empty sensitivity list, the
process runs continuously. In the declaration, every-
thing from §2.4 applies. For the sequential statements,
the following applies:

• Neither selective (with) nor conditional (when)
should be used. They are replaced with new se-
quential constructs (if and case).

• Signal assignments (with <=) change their value
only at the end of the process.

• Variables on the other hand change as soon as
they are assigned (with :=).

And for good practice:

• Before any if or case default values should be
assigned.

• Any signal on the RHS should be in the sensitiv-
ity list.

• Processes with empty sensitivity lists should only
be used for simulations.

The sequential replacements for with and when are
in the listings below.

3

1 if 〈 condition 〉 then
2 -- sequential statements
3 elsif 〈 condition 〉 then
4 -- sequential statements
5 else
6 -- sequential statements
7 end if;

1 case 〈 expression 〉 is
2 when 〈 choice 〉 =>
3 -- sequential statements
4 when 〈 choice 〉 =>
5 -- sequential statements
6 when others =>
7 -- sequential statements
8 end case;

Processes can detect events of signals. Typically it
is used for clocks.

1 process (clk)
2 begin
3 -- rising edge
4 if clk'event and clk = '1' then
5 ... end if;
6 if rising_edge(clk) then
7 ... end if;
8
9 -- falling edge

10 if clk'event and clk = '0' then
11 ... end if;
12 if falling_edge(clk) then
13 ... end if;
14 end process;

2.6 Custom and arithmetic types
It is possible to create custom types, usually to create
state machines.

1 type 〈 name 〉 is (〈 identifier 〉, 〈 identifier 〉, …);

3 State Machines
There are 3 types of state machines.

3.1 Encoding the state
This is typical for Mealey and Moore machines.

1 type state_type is (st_rst , st_a, st_b,
↪→ st_c, ...);

2 signal present_state , next_state :
↪→ state_type;

The encoding of the state is left automatically to the
synthesizer or configured in the graphic interface of the
tool. If a custom encoding is required (Medwedjew),
adding the following generates a custom encoding.

1 attribute enum_encoding : string;
2 attribute enum_encoding of state_type:
3 type is "0001 0010 0100 ...";

Or alternatively a completely different approach is
using a vector type.

G

F

Z

Mealey

oup

inp

G

F

Z

Moore

oup

inp

G

Z

Medwedjew
oup

inp

1 subtype state_type is bit_vector(3 downto
↪→ 0);

2
3 constant st_rst : state_type := "0001";
4 constant st_a : state_type := "0010";
5 constant st_b : state_type := "0100";
6 ...
7
8 signal present_state , next_state :

↪→ state_type;

3.2 Updating the state register (Z)

1 register_logic: process (clk, rst)
2 begin
3 -- asynchronous reset
4 if rst = '1' then
5 present_state <= st_rst;
6
7 -- clock
8 elsif rising_edge(clk) then
9 present_state <= next_state;

10 end if;
11 end process;

3.3 Updating the state (G)

1 next_state_logic:
2 process (present_state , [inputs])
3 begin
4 -- default value

4

5 next_state <= state_rst;
6
7 case present_state is
8 when st_rst =>
9 -- reset state logic

10 next_state <= 〈 state 〉;
11
12 when st_a =>
13 -- logic using inputs
14 next_state <= 〈 state 〉;
15
16 ...
17 when others => null;
18 end case;
19 end process;

3.4 Updating the output (F)
Mealey

1 output_logic:
2 process (present_state , 〈 inputs 〉)
3 begin
4 -- logic with state and inputs
5 〈 output 〉 <= 〈 expression 〉;
6 end process;

Moore
1 output_logic: process (present_state)
2 begin
3 case present_state is
4 when st_rst =>
5 〈 output 〉 <= 〈 value 〉;
6
7 ...
8 end case;
9 end process;

Medwedjew
1 output_logic: 〈 output 〉 <= present_state;

4 Testbench

5

	Development model and Hardware
	VHSIC Hardware Description Language (VHDL)
	Basic syntax and identifiers
	Entities and Architectures
	Electric types and Libraries
	Declarations
	Concurrent Area
	Signal assignment and simple gates
	Aggregates
	Selective and conditional assignment
	Components
	Processes

	Custom and arithmetic types

	State Machines
	Encoding the state
	Updating the state register (Z)
	Updating the state (G)
	Updating the output (F)

	Testbench

