
DigDes: Digital Design

Naoki Pross – naoki.pross@ost.ch

Spring Semester 2021

Contents
1 VHSIC Hardware Description Language (VHDL) 2

1.1 Basic syntax and identifiers . 2
1.2 Entities and Architectures . 2
1.3 Electric types and Libraries . 2
1.4 Declarations . 2
1.5 Concurrent Area . 3

1.5.1 Signal assignment and simple gates . 3
1.5.2 Aggregates . 3
1.5.3 Seiective and conditional assignment . 3
1.5.4 Components . 3
1.5.5 Processes . 3

1.6 Custom and arithmetic types . 4

2 State Machines 4

License

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 4.0 International” license.

1

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

1 VHSIC Hardware Descrip-
tion Language (VHDL)

1.1 Basic syntax and identifiers
In VHDL an identifier is a case insensitive string
composed of A-Z a-z 0-9 _ that

• is not a keyword,
• does not start with a number or _,
• does not have two or more _ in a row.

Expressions are terminated by a semicolon ;. Two
dashes in a row cause the rest of the line to be
interpreted as a comment.

1 expression; -- comment

1.2 Entities and Architectures
In VHDL the concept of entity describes a black
box of which only inputs and outputs are known.
The internals of an entity are described through an
architecture. There can be multiple architectures
for a single entity.

Entity

Architecture 1

Architecture 2

Architecture 3

Pin

Entities are declared with port() that may con-
tain a list of pins. Pins have a mode that can be
in input (only LHS), out output (only RHS), inout
bidirectional or buffer that can stay both on LHS
and RHS. The usage of the latter is discourareged
in favour of an internal signal.

1 entity 〈 name 〉 is
2 port(
3 〈 pin 〉 : 〈 mode 〉 〈 type 〉;
4);
5 end 〈 name 〉;

Architectures are normally named after the de-
sign model, example are behavioral, structural,
selective, etc.

1 architecture 〈 name 〉 of 〈 entity 〉 is
2 -- declare used variables , signals

↪→ and component types
3 begin
4 -- concurrent area
5 end [name];

1.3 Electric types and Libraries
VHDL provides some types such as

• boolean true or false,
• bit 0 or 1,
• bit_vector one dimensional array of bits,
• integer 32-bit binary representation of a value.

From external libraries other types are available:
• std_logic advanced logic with 9 states,
• std_ulogic

The above are from the ieee.std_logic_1164 library,
and can take the values described in the following
table.

Value Meaning Usage
U Uninitialized In the simulator
X Undefined Simulator sees a bus

conflict
0 Force to 0 Low state of outputs
1 Force to 1 High state of out-

puts
Z High Impedance Three state ports
W Weak Unknown Simulator sees weak

a bus conflict
L Weak Low Open source outputs

with pull-down re-
sistor

H Weak High Open drain output
with pull-up resistor

- Don’t care Allow minimization

1.4 Declarations
Before a begin – end block, there is usually a list of
declarations. A self evident examples are constants.

1 constant 〈 name 〉 : 〈 type 〉 := 〈 value 〉;

Next, signals and variables. Signals is are wires,
they can only be connected and do not have an ini-
tial state. Variables can be assigned like in software,
but can cause the synthesization of an unwanted D-
Latch.

1 signal 〈 name 〉, [name, …] : 〈 type 〉;
2
3 variable 〈 name 〉, [name], […] : 〈 type 〉;
4 variable 〈 name 〉 : 〈 type 〉 := 〈 expression 〉;

For the hierarchical designs, when external enti-
ties are used, they must be declared as components.
The port() expression must match the entity dec-
laration.

1 component 〈 entity name 〉 is
2 port(
3 [list of pins]
4);
5 end component;

2

For entities with multiple architectures, it is pos-
sible to choose which architecture is used with the
following expression.

1 for 〈 label or all 〉: use entity 〈 library 〉.
↪→ 〈 entity 〉(〈 architecture 〉);

1.5 Concurrent Area
Architecture

clk

a

b

y
Process

Component
Entity

Logic
Gate

In the architecture between begin and end, the
expressions are not read sequentially, everything
happens at the same time. Statements inside the
concurrent area optionally have a label.

1 [label]: 〈 concurrent statement 〉;

In the concurrent area signals, components and pro-
cesses can be used to create a logic.

1.5.1 Signal assignment and simple gates

Signals are assigned using <=.
1 [label]: 〈 signal 〉 <= 〈 expression 〉;

Simple logic functions such as not, and, or, xor, etc.
can be used.

1 y <= (a and s) or (b and not(s));

1.5.2 Aggregates

For vector types it is possible to create a value out
of multiple signals.

1 〈 vector 〉 <= (
2 〈 index 〉 => 〈 source or value 〉,
3 〈 index 〉 => 〈 source or value 〉,
4 [others] => 〈 source or value 〉
5);

1 -- declaration
2 signal data : bit_vector(6 downto 0);
3 signal a, b : bit;
4 -- concurrent
5 data = (1 => a, 0 => b, others => '0')

1.5.3 Seiective and conditional assignment

Higher level conditions can be written in two ways.
1 -- using when
2 [label]: y <= 〈 source 〉 when 〈 condition 〉 else
3 〈 source 〉 when 〈 condition 〉 else
4 〈 source 〉 when 〈 condition 〉;
5
6 -- using with
7 [label]: with 〈 signal 〉 select 〈 dest 〉 <=
8 〈 source 〉 when 〈 value 〉,
9 〈 source 〉 when 〈 value 〉,

10 〈 source 〉 when others;

1.5.4 Components

External components that have been previously de-
clared, can be used with the port map(〈 assignments 〉)
syntax. For example:

1 -- declaration
2 component flipflop is
3 port(
4 clk, set, reset : in std_ulogic ,
5 Q, Qn : out std_ulogic
6);
7 end component flipflop;
8
9 signal clk_int , a, b : in std_ulogic;

10 signal y, z : out std_ulogic;
11
12 -- concurrent
13 u1: flipflop
14 port map(
15 clk => clk_int ,
16 set => a,
17 reset => b,
18 Q => y,
19 Qn => z
20);

1.5.5 Processes

For more sophisticated logic, VHDL offers a way of
writing sequential statements called processes.

1 [label]: process ([sensitivity list])
2 -- declarations
3 begin
4 -- sequential statements
5 end process;

Processes have a sensitivity list that could also be
empty. When a signal in the sensitivity list changes
state, the process is executed. In the case of an
empty sensitivity list, the process runs continuously.
In the declaration, everything from §1.4 applies.
For the sequential statements, the following applies:

• Neither selective (with) nor conditional (when
↪→) should be used, as there because there
are new sequential constructs (if and case).

3

• Signal assignments (with <=) change their value
only at the end of the process.

• Variables on the other hand change as soon
as they are assigned (with :=).

And for good practice:

• Before any if or case default values should be
assigned.

• Any signal on the RHS should be in the sen-
sitivity list.

• Processes with empty sensitivity lists should
only be used for simulations.

The sequential replacements for with and when
are in the listings below.

1 if 〈 condition 〉 then
2 -- sequential statements
3 elsif 〈 condition 〉 then
4 -- sequential statements
5 else
6 -- sequential statements
7 end if;

1 case 〈 expression 〉 is
2 when 〈 choice 〉 =>
3 -- sequential statements
4 when 〈 choice 〉 =>
5 -- sequential statements
6 when others =>
7 -- sequential statements
8 end case;

Processes can detect events of signals. Typically
this is used for clocks.

1 process (clk)
2 begin
3 -- rising edge
4 if clk'event and clk = '1' then
5 ... end if;
6 if rising_edge(clk) then
7 ... end if;
8
9 -- falling edge

10 if clk'event and clk = '0' then
11 ... end if;
12 if falling_edge(clk) then
13 ... end if;
14 end process;

1.6 Custom and arithmetic types
It is possible to create custom types, usually to cre-
ate state machines.

1 type 〈 name 〉 is (〈 identifier 〉, 〈 identifier 〉,
↪→ …);

2 State Machines
There are 3 types of state machines.

G

F

Z

Mealey

oup

inp

G

F

Z

Moore

oup

inp

G

Z

Medwedjew
oup

inp

4

	VHSIC Hardware Description Language (VHDL)
	Basic syntax and identifiers
	Entities and Architectures
	Electric types and Libraries
	Declarations
	Concurrent Area
	Signal assignment and simple gates
	Aggregates
	Seiective and conditional assignment
	Components
	Processes

	Custom and arithmetic types

	State Machines

