\section[VHSIC Hardware Description Language (VHDL)]{ VHSIC Hardware Description Language (VHDL) % \texttt{VHDL}: Very high-speed integrated circuits program % Hardware Description Language } \subsection{Basic syntax and identifiers} In VHDL an identifier is a case insensitive string composed of \texttt{A-Z a-z 0-9 \_} that \begin{itemize} \item is not a keyword, \item does not start with a number or \texttt{\_}, \item does not have two or more \texttt{\_} in a row. \end{itemize} Expressions are terminated by a semicolon \texttt{;}. Two dashes in a row cause the rest of the line to be interpreted as a comment. \begin{lstlisting}[language=vhdl] expression; -- comment \end{lstlisting} \subsection{Structure and Libraries} The VHDL code is organized into \emph{libraries} declared with the \vhdl{library} keyword. The library of your code is called \texttt{work}, standard features (\texttt{bit}, \texttt{integer}, \ldots) are found in \texttt{std}, and IEEE standard parts are in \texttt{ieee}. \texttt{work} and \texttt{std} are always implicit and must not be declared. \begin{lstlisting}[language=vhdl] library `\reqph{library name}`; \end{lstlisting} Once declared a library is composed of \emph{packages}, which can contain elements (constants, entities, \ldots). To access the elements the syntax is \begin{lstlisting}[language=vhdl] `\reqph{library}`.`\reqph{package}`.`\reqph{element}`; \end{lstlisting} To avoid having to write a long name every time it is possible to import names using \begin{lstlisting}[language=vhdl] use `\reqph{library}`.`\reqph{element or {\tt all}}`; use `\reqph{library}`.`\reqph{package}`.`\reqph{element or {\tt all}}`; \end{lstlisting} \subsection{Entities and Architectures} In VHDL the concept of \emph{entity} describes a black box of which only inputs and outputs are known. The internals of an entity are described through an \emph{architecture}. There can be multiple architectures for a single entity. \begin{center} \ttfamily \begin{tikzpicture}[ node distance = 1mm, pin/.style = { draw = black, fill = white, circle, thick, inner sep = 0pt, minimum size = 2mm, }, ] \node[ rectangle, draw = black, thick, fill = gray!20!white, minimum width = 4.5cm, minimum height = 4cm, ] (entity) {}; \node[anchor = south west] at (entity.north west) {Entity}; \foreach \x in {1,2,3}{ \node[ rectangle, draw = black, thick, fill = white, minimum width = 3.5cm, minimum height = .75cm, ] (arch\x) at ($(entity.north) + (0, -1 * \x)$) {Architecture \x}; } \foreach \x in {1,...,4}{ \draw[thick] ($(entity.north west) - (0, .75 * \x)$) node[pin] {} to ++(-.75, 0) node (pinl\x) {}; \draw[thick] ($(entity.north east) - (0, .75 * \x)$) node[pin] {} to ++(.5, 0) node (pinr\x) {} ; } \node[right] at (pinr1) {Pin}; \end{tikzpicture} \end{center} Entities are declared with \vhdl{port()} that may contain a list of pins. Pins have a mode that can be \vhdl{in} input (only LHS\footnote{Left hand side}), \vhdl{out} output (only RHS\footnote{Right hand side}), \vhdl{inout} bidirectional or \vhdl{buffer} that can stay both on LHS and RHS. The usage of the latter is discourareged in favour of an internal signal. \begin{lstlisting}[language=vhdl] entity `\reqph{name}` is port( `\reqph{pin}` : `\reqph{mode} \reqph{type}`; ); end `\reqph{name}`; \end{lstlisting} Architectures are normally named after the design model, examples are \texttt{behavioral}, \texttt{structural}. \begin{lstlisting}[language=vhdl] architecture `\reqph{name}` of `\reqph{entity}` is -- declare used variables, signals and component types begin -- concurrent area end `\optionalph{name}`; \end{lstlisting} \subsection{Electric types} VHDL provides some types such as \begin{itemize} \item \vhdl{boolean} true or false, \item \vhdl{bit} 0 or 1, \item \vhdl{bit_vector} one dimensional array of bits, \item \vhdl{integer} 32-bit binary representation of a value. \end{itemize} From external libraries other types are available: \begin{itemize} \item \vhdl{std_logic} advanced logic with 9 states, \item \vhdl{std_ulogic} same as the previous but \emph{unresolved}. \end{itemize} The above are from the \vhdl{ieee.std_logic_1164} library, and can take the values described in the following table. \begin{center} \begin{tabularx}{\linewidth}{>{\ttfamily}c l X} \toprule Value & Meaning & Usage \\ \midrule U & Uninitialized & In the simulator \\ X & Undefined & Simulator sees a bus conflict \\ 0 & Force to 0 & Low state of outputs \\ 1 & Force to 1 & High state of outputs \\ Z & High Impedance & Three state ports \\ W & Weak Unknown & Simulator sees weak a bus conflict \\ L & Weak Low & Open source outputs with pull-down resistor \\ H & Weak High & Open drain output with pull-up resistor \\ - & Don't care & Allow minimization \\ \bottomrule \end{tabularx} \end{center} For the \emph{resolved} types, i.e. \vhdl{std_logic} types, when a signal is multiply driven the conflict is resolved according to the table below. Unresolved types will give a synthesization error. \begin{center} \ttfamily \begin{tabular}{c|ccccccccc} \toprule & U & X & 0 & 1 & Z & W & L & H & - \\ \midrule U & U & U & U & U & U & U & U & U & U \\ X & U & X & X & X & X & X & X & X & X \\ 0 & U & X & 0 & X & 0 & 0 & 0 & 0 & X \\ 1 & U & X & X & 1 & 1 & 1 & 1 & 1 & X \\ Z & U & X & 0 & 1 & Z & W & L & H & X \\ W & U & X & 0 & 1 & W & W & W & W & X \\ L & U & X & 0 & 1 & L & W & L & W & X \\ H & U & X & 0 & 1 & H & W & W & H & X \\ - & U & X & X & X & X & X & X & X & X \\ \bottomrule \end{tabular} \end{center} A good example is a tri-state bus: \begin{lstlisting}[language=vhdl] architecture tristate of buscontrol is begin bus_read: inp <= bus_io; bus_write: process(enable, oup) begin bus_io <= (others => 'Z'); if enable = '1' then bus_io <= oup; end if; end process; end architecture tristateout; \end{lstlisting} \subsection{Declarations} \label{sec:declarations} Before a \vhdl{begin} -- \vhdl{end} block, there is usually a list of declarations. A self evident examples are \emph{constants}. \begin{lstlisting}[language=vhdl] constant `\reqph{name}` : `\reqph{type}` := `\reqph{value}`; \end{lstlisting} Next, \emph{signals} and \emph{variables}. Signals is are wires, they can only be connected and do not have an initial state. Variables can be assigned like in software, but can cause the synthesization of an unwanted D-Latch. \begin{lstlisting}[language=vhdl] signal `\reqph{name}`, `\optionalph{name, \ldots}` : `\reqph{type}`; variable `\reqph{name}`, `\optionalph{name}`, `\optionalph{\ldots}` : `\reqph{type}`; variable `\reqph{name}` : `\reqph{type}` := `\reqph{expression}`; \end{lstlisting} For the hierarchical designs, when external entities are used, they must be declared as components. The \vhdl{port()} expression must match the entity declaration. \begin{lstlisting}[language=vhdl] component `\reqph{entity name}` is port( `\optionalph{list of pins}` ); end component; \end{lstlisting} For entities with multiple architectures, it is possible to choose which architecture is used with the following expression. \begin{lstlisting}[language=vhdl] for `\reqph{label or {\tt all}}`: use entity `\reqph{library}`.`\reqph{entity}`(`\reqph{architecture}`); \end{lstlisting} \subsection{Concurrent Area} \begin{center} \ttfamily \begin{tikzpicture}[ node distance = 1mm, pin/.style = { draw = black, fill = white, circle, thick, inner sep = 0pt, minimum size = 2mm, }, component/.style = { draw = black, thick, fill = white, rectangle, minimum width = 18mm, minimum height = 12mm, align = center, }, ] \node[ draw = black, rectangle, fill = gray!20!white, thick, minimum width = .75\linewidth, minimum height = 4cm, ] (arch) {}; \node[anchor = south west] at (arch.north west) {Architecture}; \node[pin] (clk) at ($(arch.north west) - (0,1)$) {}; \node[pin] (a) at ($(clk) - (0,1)$) {}; \node[pin] (b) at ($(a) - (0,1)$) {}; \node[pin] (y) at ($(arch.north east) - (0,1)$) {}; \node[left = of clk] {clk}; \node[left = of a] {a}; \node[left = of b] {b}; \node[right = of y] {y}; \node[component] (c1) at ($(clk) + (2,-.2)$) {Process}; \node[component] (c2) at ($(c1) + (.2,-1.8)$) {Component\\ (entity)}; \node[ component, minimum width = 0mm, minimum height = 0mm, ] (c3) at ($(c1) + (2.6,-.2)$) {Logic\\ Gate}; \draw[thick] (clk) to[out = 0, in = 180] ($(c1.west) + (0,.2)$) (a) to[out = 0, in = 180] ($(c1.west) - (0,.2)$) (b) to[out = 0, in = 180] (c2.west) (c1.east) to[out = 0, in = 180] ($(c3.west) + (0,.2)$) (c2.east) to[out = 0, in = 180] ($(c3.west) - (0,.2)$) (c3.east) to[out = 0, in = 180] (y) ; \end{tikzpicture} \end{center} In the architecture between \vhdl{begin} and \vhdl{end}, the expressions are \emph{not} read sequentially, everything happens at the same time. Statements inside the concurrent area optionally have a label. \begin{lstlisting}[language=vhdl] `\optionalph{label}`: `\reqph{concurrent statement}`; \end{lstlisting} In the concurrent area signals, components and processes can be used to create a logic. \subsubsection{Signal assignment and simple gates} Signals are assigned using \vhdl{<=}. \begin{lstlisting}[language=vhdl] `\optionalph{label}`: `\reqph{signal}` <= `\reqph{expression}`; \end{lstlisting} Simple logic functions such as \vhdl{not}, \vhdl{and}, \vhdl{or}, \vhdl{xor}, etc. can be used. \begin{lstlisting}[language=vhdl] y <= (a and s) or (b and not(s)); \end{lstlisting} \subsubsection{Aggregates} For vector types it is possible to create a value out of multiple signals. \begin{lstlisting}[language=vhdl] `\reqph{vector}` <= ( `\reqph{index}` => `\reqph{source or value}`, `\reqph{index}` => `\reqph{source or value}`, `\optionalph{\tt others}` => `\reqph{source or value}` ); \end{lstlisting} \begin{lstlisting}[language=vhdl] -- declaration signal data : bit_vector(6 downto 0); signal a, b : bit; \end{lstlisting} \begin{lstlisting}[language=vhdl] -- concurrent data = (1 => a, 0 => b, others => '0') \end{lstlisting} \subsubsection{Selective and conditional assignment} Higher level conditions can be written in two ways. \begin{lstlisting}[language=vhdl] -- using when `\optionalph{label}:` y <= `\reqph{source}` when `\reqph{condition}` else `\reqph{source}` when `\reqph{condition}` else `\reqph{source}` when `\reqph{condition}`; \end{lstlisting} \begin{lstlisting}[language=vhdl] -- using with `\optionalph{label}`: with `\reqph{signal}` select `\reqph{dest}` <= `\reqph{source}` when `\reqph{value}`, `\reqph{source}` when `\reqph{value}`, `\reqph{source}` when others; \end{lstlisting} \subsubsection{Components} External components that have been previously declared can be used with the \vhdl{port map(}\reqph{assignments}\texttt{)} syntax. For example: \begin{lstlisting}[language=vhdl] -- declaration component flipflop is port( clk, set, rst : in std_ulogic, Q, Qn : out std_ulogic ); end component flipflop; signal clk_int, a, b : in std_ulogic; signal y, z : out std_ulogic; \end{lstlisting} \begin{lstlisting}[language=vhdl] -- concurrent u1: flipflop port map( clk => clk_int, set => a, rst => b, Q => y, Qn => z ); \end{lstlisting} \subsubsection{Processes} For more sophisticated logic VHDL offers a way of writing sequential statements called \emph{process}. \begin{lstlisting}[language=vhdl] `\optionalph{label}:` process (`\optionalph{sensitivity list}`) -- declarations begin -- sequential statements end process; \end{lstlisting} Processes have a \emph{sensitivity list} that can be empty. When a signal in the sensitivity list changes state, the process is executed. With an empty sensitivity list, the process runs continuously. In the declaration, everything from \S\ref{sec:declarations} applies. For the sequential statements, the following applies: \begin{itemize} \item Neither selective (\vhdl{with}) nor conditional (\vhdl{when}) should be used. They are replaced with new sequential constructs (\vhdl{if} and \vhdl{case}). \item Signal assignments (with \vhdl{<=}) change their value \emph{only at the end of the process}. \item Variables on the other hand change as soon as they are assigned (with \vhdl{:=}). \end{itemize} And for good practice: \begin{itemize} \item Before any \vhdl{if} or \vhdl{case} default values should be assigned. \item Any signal on the RHS should be in the sensitivity list. \item Processes with empty sensitivity lists should only be used for simulations. \end{itemize} The sequential replacements for \vhdl{with} and \vhdl{when} are in the listings below. \begin{lstlisting}[language=vhdl] if `\reqph{condition}` then -- sequential statements elsif `\reqph{condition}` then -- sequential statements else -- sequential statements end if; \end{lstlisting} \begin{lstlisting}[language=vhdl] case `\reqph{expression}` is when `\reqph{choice}` => -- sequential statements when `\reqph{choice}` => -- sequential statements when others => -- sequential statements end case; \end{lstlisting} Processes can detect \emph{attributes} of signals. Typically it is used for clocks. There are also other attributes such as \vhdl{s'stable(t)}. \begin{lstlisting}[language=vhdl] process (clk) begin -- rising edge if clk'event and clk = '1' then ... end if; if rising_edge(clk) then ... end if; -- falling edge if clk'event and clk = '0' then ... end if; if falling_edge(clk) then ... end if; end process; \end{lstlisting} \subsection{Custom and arithmetic types} It is possible to create custom types, usually to create state machines. \begin{lstlisting}[language=vhdl] type `\reqph{name}` is (`\reqph{identifier}`, `\reqph{identifier}`, `\ph{\ldots}`); \end{lstlisting} \subsection{Pitfalls and RTL model} Coming from a programming language, a common pitfall is to write something like \begin{center} \begin{minipage}{.4\linewidth} \begin{lstlisting}[language=vhdl] -- wrong!!! y <= y xor a; \end{lstlisting} \end{minipage} \begin{minipage}{.4\linewidth} \centering \ttfamily \begin{tikzpicture}[ outer sep = 0mm, inner sep = 0mm, comp/.style = { rectangle, draw = black, thick, fill = gray!20!white, minimum height = 1cm, minimum width = 1cm, } ] \node[comp] (G) {=1}; \draw[thick] (G.west) ++(0,-.2) to ++(-1,0) node[left] {a}; \draw[thick] (G.west) ++(0,.2) to ++(-.5,0) to ++(0,.8) to ++(2,0) to ++(0,-1) node[minimum size = 1mm, fill = black, circle] (n) {} to ++(-.5,0); \draw[thick] (n) to ++(.5,0) node[right] {y}; \draw[ultra thick, red] (G.north) ++(-.2,.2) to ++(.4,.6); \end{tikzpicture} \end{minipage} \end{center} but this will be synthesised into an oscillating circuit, that must be avoided at all costs. The correct way is to have a memory for the next state, with a logic separated into combinatorial and sequential parts. \begin{lstlisting}[language=vhdl] -- combinatorial y_next <= y xor a; -- sequential process (clk) begin if rising_edge(clk) then y <= y_next; end if; end process; \end{lstlisting} This method is known as \emph{register transfer level} design. % vim:ts=2 sw=2 et: