
DigMe: Digital Microelectronics

Naoki Pross – naoki.pross@ost.ch

Fall Semester 2021

Contents

1 License

This work is licensed under a Creative Commons “Attribution-NonCommercial-
ShareAlike 4.0 International” license.

i

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

2 Design Flow

3 Design constraints and static
timing analysis (STA)

Synthesis and implementation tools can reduce VHDL
code into a set of combinatoric and sequetial logic parts,
but for the last step information about the hardware is
required. Such information is given through the con-
straints defined through XDC1 or SDC2 files. Both file
formats are mostly a set ot TCL commands.

Constraints should be generally organized in three
sections (or separate files):

• Physical constraints: described below, usually be-
fore timing.

• Timing assertions: primary clocks, virtual clocks,
generated clocks, clock groups, input and output
delay constraints.

• Timing exceptions: false paths, min / max delay,
multicycle paths, case analysis, disable timing.

3.1 Physical constraints
Physical contraints include: I/O contraints, Netlist
constraints, Placement constraints, Routing constraings.
Physical constraints are usually given through the graph-
ical user interface.

3.2 Timing constraints
tslack = T − tarrival

4 System level VHDL
4.1 Aliases
The goal is now to build re-usable intellectual property
(IP) blocks with VHDL. For that we need to refresh
some important features of the lanugage. The first of
which are aliases.

1 signal data_bus:
2 std_logic_vector(31 downto 0);
3 alias first_nibble:
4 std_logic_vector(0 downto 3)
5 is data_bus(31 downto 28);

4.2 Generics
4.3 Generators
Another useful feature are generate statement, with
the syntax that allows the instantiation of multiple
components.

1Xilix Design Constraints, proprietary format.
2Synopsys Design Contraints, industry standard.

1 [label]: for 〈 identifier 〉 in 〈 range 〉 generate
2 -- optional declaration part
3 -- begin only required if there is a

↪→ declaration
4 [begin]
5 -- concurrent statements
6 end generate [label];

For example:
1 for i in 0 to 7 generate
2 x(i) <= a(i) xor b(7 - i);
3 end generate;

Or in a more realistic case, with components imported
from elsewhere.

Listing 1: Example of generate with a component.

1 -- in architecture
2 bcd_to_sseg_inst_loop:
3 for i in 0 to nr_digits - 1 generate
4 bcd_to_sseg_inst: component bcd_to_sseg
5 port map(
6 clk => clk,
7 rst => rst,
8 bcd => bcd_array(i),
9 sseg => sseg_array(i)

10);
11 end generate;

where bcd_array and sseg_array are of course array
types, and nr_digits is a constant.

4.4 Functions and procedures
Furthermore VHDL has functions that can be useful to
avoid rewriting the same code. Function have multiple
inputs and a signel output, are allowed to be called
recursively, but cannot declare or assign signals, nor
use wait statements.

1 function 〈 name 〉 ([list of arguments with type])
2 return 〈 return type 〉
3 is
4 [declaration of variables]
5 begin
6 -- sequential statement (but not wait)
7 end function 〈 name 〉;

An example is a parity generator:

Listing 2: An odd parity generator function.

1 function pargen(avect: std_ulogic_vector)
2 return std_ulogic
3 is
4 variable po_var : std_logic;
5 begin
6 po_var := '1';
7 for i in avect'range loop
8 if avect(i) = '1' then
9 po_var := not po_var;

10 end if;
11 end loop;
12 return po_var;
13 end function pargen;

1

In testbenches it is common to see procedures. They
differ for function as they can have multiple inputs
and multiple output. Because of this they in practice
are usually not synthetizable. The syntax is similar to
functions:

1 procedure 〈 name 〉 ([list of arguments with
direction]) is

2 [declaration of variables]
3 begin
4 -- sequential statement
5 end procedure 〈 name 〉;

With list of arguments with direction it is meant an
expression like a, b : in real; w : out real, similar
to the arguments of port.

4.5 Arrays and records
To efficiently use generate statement, such as in listing
??, we ned array types. Arrays types (fields) of other
types are defined with the following syntax.

1 type 〈 name 〉 is array (〈 upper
limit 〉 downto 〈 lower limit 〉) of 〈 base type 〉;

For example to complete listing ??, we create 1 by 1
matrices.

1 constant nr_digits : integer := 3;
2 type bcd_array_type is
3 array (0 to nr_digits -1)
4 of std_ulogic_vector(3 downto 0);
5 type bcd_array_type is
6 array (0 to nr_digits -1)
7 of std_ulogic_vector(6 downto 0);

While all arrays elements must have the same un-
derlying type, records allow for different types to be
combined together. For example:

1 type memory_access is record
2 address : integer range 0 to

↪→ address_max -1;
3 mem_block : integer range 0 to 3;
4 data : std_ulogic_vector(word_width -1

↪→ downto 0);
5 end record;

4.6 Packages
To declare your own packges, the syntax is rather easy:

1 〈 library and / or use statements 〉
2 package 〈 name 〉 is
3 [declarations]
4 end package 〈 package name 〉;

And possibly in another file the implementation is give
with:

1 package body 〈 name 〉 is
2 〈 list of definitions 〉
3 end package body 〈 name 〉;

In practice it is common to see for example a con-
figuration package, that contains all constants for the
project. For example if we were to put the function
pargen from listing ?? we could do:

1 package parity_helpers is
2 constant nibble : integer;
3 constant word : integer;
4 function pargen(avect :

↪→ std_ulogic_vector) return
↪→ std_ulogic;

5 end package parity_helpers;
6
7 package body parity_helpers is
8 -- functions
9 function pargen(avect:

↪→ std_ulogic_vector)
10 return std_ulogic
11 is …same as listing ?? …
12 end function pargen;
13 -- instantiation of variables
14 constant nibble : integer := 4;
15 constant word : integer := 8;
16 end package body parity_helpers;

And later use it with use work.parity_helpers.all.

4.7 Fixed point arithmetic
4.7.1 Mathematics

Recall that a binary number is represented using weights
‘bits’ ak ∈ {0, 1} in front of powers of 2, so that an in-
teger z ∈ N0 is represented with n bits as

z =
n−1∑
k=0

ak2k.

Thus with n bits we can represent the integer range
{0, . . . , 2k−1}. To expand this to negative integers we
shift everything by 2k obtaining

z = −(2n−1)an−1 +
n−2∑
k=0

ak2k,

which allows for values in the asymmetric integer range
{−2n−1, . . . , 2n−1 − 1}. To further extend this to the
rational numbers we add to the n integer bits, m frac-
tional bits, such that

z =
n−1∑

k=−m

ak2k.

This format is known as the Qn.m or Q(n, m) format.
It is however not specified if the values are to be in-
terpreted as signed or unsigned. For that there are:
uQn.m for unsigned values which has range 0 to 2n −
2−m, and sQn.m for signed values with range −2n−1 to
2n−1 − 2−m (same as previous but shifted by 2n).

When doing calculations using Qn.m with different
sizes, generally the following rules apply:

Q(n1, m1) + Q(n2, m2)
= Q(max(n1, n2) + 1, max(m1, m2))

Q(n1, m1) · Q(n2, m2) = Q(n1 + n2, m1 + m2)

There is an edge case for products between sQn.m num-
bers where we can save a bit using

Qs(n1, m1) · Qs(n2, m2)
= Qs(n1 + n2 − 1, m1 + m2 + 1)

2

4.7.2 Manual implementation

To manually implement fixed point arithmetic in VHDL,
we can use integer types by left shifting the numbers
by the right amount. For example:

1 constant A : real = 2.5248;
2 -- to convert this into a uQ2.6 (8 bits)
3 -- we have to left shift by 2^6.
4 variable a_fix : unsigned(7 downto 0) :=
5 to_unsigned(integer(2.0 ** 6 * A), 8);
6 -- Note that by keeping only 6 digits
7 -- the value is truncated down to 2.5156

4.7.3 With VHDL 2008 fixed_pkg

In VHDL 2008 there is a fixed point arithmetic li-
brary, which is unfortunately not completely standard-
ized yet. It it not always optimum in terms of resource
usage and speed because it guarantees overflow preven-
tion. To import it we simply add the following:

1 -- since VHDL 2008
2 library ieee;
3 use ieee.fixed_generic_pkg.all;
4 use ieee.fixed_float_types.all;

1 -- older versions
2 library ieee_proposed;
3 use ieee_proposed.fixed_pkg.all;
4 use ieee_proposed.fixed_float_types.all;

To represent uQn.m numbers the syntax is:
1 signal f : ufixed(〈 n 〉 downto -〈 m 〉);

The minus sign implies that the values are after the
comma. To write sQn.m numbers there is the type
sfixed. Actually any range is valid, so it is possible to
write:

1 signal f : ufixed(-2 downto -3);

Conversion operators to_ufixed, to_sfixed are avail-
able. To get back n and m the attributes 'high resp.
'low are available. Furthermore the library allows to
control the behaviour of conversions and range limits,
through arguments of to_ufixed (or to_sfixed).

• Overflow is controlled with overflow_style set to
fixed_saturated (default, value cannot increase /
decrease) or fixed_wrap (over / underflow).

• Rounding can be controlled by setting roud_style
to fixed_round (default) or fixed_truncate.

4.8 Block RAM

5 Intellectual Property (IP) Blocks

6 Serial communication
6.1 Classification
Serial communication protocols can be categorized by
various criteria. From a network topology standpoint
nodes can be connected as point to point (USART),

star, bus (PCI), ring, mesh (IoT), fully connected, line,
or tree . From a timing perspective a communication
link can be either synchronos or asynchronous. The
hardware interface can be serial or parallel. The com-
munication can be On-Chip or Off-Chip. And finally,
physically the electrical signal representing bits can
be single ended, differential, voltage mode, or current
mode.

Of the well known Open System Interconnect (OSI)
model, which is composed of seven layers (from top
to bottom): application, presentation, session, trans-
port, network (packet), data-link (frame), physical (bit
stream), in this course we will only care about the bot-
tom 2, namely data-link and physical.

6.2 Logic to physical signal conversion

Z0
Rf

Vcco

Z0
Rn

Vcco/2

Rf

Vcco/2

Rs
Z0

Rs

Rnd Rfd

Figure 1:

3

