% !TeX program = xelatex % !TeX encoding = utf8 % !TeX root = ElMag.tex % vim: sw=2 ts=2 et: %% TODO: publish to CTAN \documentclass[margin=normal]{tex/hsrzf} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Packages %% TODO: publish to CTAN \usepackage{tex/hsrstud} %% Language configuration \usepackage{polyglossia} \setdefaultlanguage{english} %% License configuration \usepackage[ type={CC}, modifier={by-nc-sa}, version={4.0}, lang={english}, ]{doclicense} %% Theorems \usepackage{amsthm} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Metadata \course{Electrical Engineering} \module{ElMag} \semester{Fall Semseter 2021} \authoremail{naoki.pross@ost.ch} \author{\textsl{Naoki Pross} -- \texttt{\theauthoremail}} \title{\texttt{\themodule} Zusammenfassung} \date{\thesemester} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Macros and settings %% Theorems \newtheoremstyle{elmagzf} % name of the style to be used {\topsep} {\topsep} {} {0pt} {\bfseries} {.} { } { } \theoremstyle{elmagzf} \newtheorem{theorem}{Theorem} \newtheorem{method}{Method} \newtheorem{application}{Application} \newtheorem{definition}{Definition} \newtheorem{remark}{Remark} \newtheorem{note}{Note} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Document \begin{document} % use roman numberals for introductiory pages \pagenumbering{roman} \maketitle % \begin{abstract} % \end{abstract} \tableofcontents \section*{License} \doclicenseThis % actual content \clearpage \twocolumn \setcounter{page}{1} \pagenumbering{arabic} \section{Vector Analysis Recap} \subsection{Partial derivatives} \begin{definition}[Partial derivative] A vector valued function \(f: \mathbb{R}^m\to\mathbb{R}\), with \(\vec{v}\in\mathbb{R}^m\), has a partial derivative with respect to \(v_i\) defined as \[ \partial_{v_i} f(\vec{v}) % = f_{v_i}(\vec{v}) = \frac{\partial f}{\partial v_i} = \lim_{h\to 0} \frac{f(\vec{v} + h\uvec{e}_i) - f(\vec{v})}{h} \] \end{definition} \begin{theorem}[Integration of partial derivatives] Let \(f: \mathbb{R}^m\to\mathbb{R}\) be a partially differentiable function of many \(x_i\). When \(x_i\) is \emph{indipendent} with respect to all other \(x_j\) \((0 < j \leq m, j \neq i)\) then \[ \int \partial_{x_i} f \,d x_i = f + C, \] where \(C\) is a function of \(x_1, \ldots, x_m\) but not of \(x_i\). \end{theorem} To illustrate the previous theorem, in a simpler case with \(f(x,y)\), we get \[ \int \partial_x f(x,y) \,dx = f(x, y) + C(y). \] Beware that this is valid only if \(x\) and \(y\) are indipendent. If there is a relation \(x(y)\) or \(y(x)\) the above does not hold. \subsection{Vector derivatives} \begin{definition}[Gradient vector] The \emph{gradient} of a function \(f(\vec{x}), \vec{x}\in\mathbb{R}^m\) is a column vector containing the partial derivatives in each direction. \[ \grad f (\vec{x}) = \sum_{i=1}^m \partial_{x_i} f(\vec{x}) \uvec{e}_i = \begin{pmatrix} \partial_{x_1} f(\vec{x}) \\ \vdots \\ \partial_{x_m} f(\vec{x}) \\ \end{pmatrix} \] \end{definition} \begin{theorem}[Gradient in curvilinear coordinates] Let \(f: \mathbb{R}^3 \to \mathbb{R}\) be a scalar field. In cylindrical coordinates \((r,\phi,z)\) \[ \grad f = \uvec{r}\,\partial_r f + \uvec{\phi}\,\frac{1}{r}\partial_\phi f + \uvec{z}\,\partial_z f, \] and in spherical coordinates \((r,\theta,\phi)\) \[ \grad f = \uvec{r}\,\partial_r f + \uvec{\theta}\,\frac{1}{r} \partial_\theta f + \uvec{\phi}\,\frac{1}{r \sin\theta} \partial_\phi f. \] \end{theorem} \begin{definition}[Divergence] Let \(\vec{F}: \mathbb{R}^m \to \mathbb{R}^m\) be a vector field. The divergence of \(\vec{F} = (F_{x_1},\ldots, F_{x_m})^t\) is \[ \div\vec{F} = \sum_{i = 1}^m \partial_{x_i} F_{x_i} , \] as suggested by the (ab)use of the dot product notation. \end{definition} \begin{theorem}[Divergence in curvilinear coordinates] Let \(\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3\) be a field. In cylindrical coordinates \((r,\phi,z)\) \[ \div \vec{F} = \frac{1}{r} \partial_r (r F_r) + \frac{1}{r}\partial_\phi F_\phi + \partial_z F_z, \] and in spherical coordinates \((r,\theta,\phi)\) \begin{align*} \div \vec{F} = \frac{1}{r^2} \partial_r (r^2 F_r) & + \frac{1}{r \sin\theta} \partial_\theta (\sin\theta F_\theta) \\ & + \frac{1}{r \sin\theta} \partial_\phi F_\phi \end{align*} \end{theorem} \begin{theorem}[Divergence theorem, Gauss's theorem] Because the flux on the boundary \(\partial V\) of a volume \(V\) contains information of the field inside of \(V\), it is possible relate the two with \[ \int_V \div \vec{F} \,dv = \oint_{\partial V} \vec{F} \dotp d\vec{s} . \] \end{theorem} \begin{definition}[Curl] Let \(\vec{F}\) be a vector field. In 2 dimensions \[ \curl \vec{F} = \left(\partial_x F_y - \partial_y F_x\right)\uvec{z}. \] And in 3D \[ \curl \vec{F} = \begin{pmatrix} \partial_y F_z - \partial_z F_y \\ \partial_z F_x - \partial_x F_z \\ \partial_x F_y - \partial_y F_x \end{pmatrix} = \begin{vmatrix} \uvec{x} & \uvec{y} & \uvec{z} \\ \partial_x & \partial_y & \partial_z \\ F_x & F_y & F_z \end{vmatrix} . \] \end{definition} \begin{definition}[Curl in curvilinear coordinates] Let \(\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3\) be a field. In cylindrical coordinates \((r,\phi,z)\) \begin{align*} \curl \vec{F} = &\left(\frac{1}{r} \partial_\phi F_z - \partial_z F_\phi \right) \uvec{r} \\ &+ \left(\partial_z F_r - \partial_r F_z \right) \uvec{\phi} \\ &+ \frac{1}{r} \bigg[ \partial_r (rF_\phi) - \partial_\phi F_r \bigg] \uvec{z}, \end{align*} and in spherical coordinates \((r,\theta,\phi)\) \begin{align*} \curl \vec{F} = &\frac{1}{r \sin\theta} \bigg[ \partial_\theta (\sin\theta F_\phi) - \partial_\phi F_\theta \bigg] \uvec{r} \\ &+ \frac{1}{r} \bigg[ \frac{1}{\sin\theta} \partial_\phi F_r - \partial_r (r F_\phi) \bigg] \uvec{\theta} \\ &+ \frac{1}{r} \bigg[ \partial_r (r F_\theta) - \partial_\theta F_r \bigg] \uvec{\phi} . \end{align*} \end{definition} \begin{theorem}[Stokes' theorem] \[ \int_S \curl \vec{F} \dotp d\vec{s} = \oint_{\partial S} \vec{F} \dotp d\vec{r} \] \end{theorem} \subsection{Second vector derivatives} \begin{definition}[Laplacian operator] A second vector derivative is so important that it has a special name. For a scalar function \(f: \mathbb{R}^m \to \mathbb{R}\) the divergence of the gradient \[ \laplacian f = \div (\grad f) = \sum_{i=1}^m \partial_{x_i}^2 f_{x_i} \] is called the \emph{Laplacian operator}. \end{definition} \begin{theorem}[Laplacian in curvilinear coordinates] Let \(f: \mathbb{R}^3 \to \mathbb{R}\) be a scalar field. In cylindrical coordinates \((r,\phi,z)\) \[ \laplacian f = \frac{1}{r} \partial_r (r \partial_r f) + \frac{1}{r^2} \partial_\phi^2 f + \partial_z^2 f \] and in spherical coordinates \((r,\theta,\phi)\) \begin{align*} \laplacian f = \frac{1}{r^2} \partial_r ( r^2 \partial_r f) & + \frac{1}{r^2\sin\theta} \partial_\theta (\sin\theta \partial_\theta f) \\ & + \frac{1}{r^2 \sin^2 \theta} \partial_\phi^2 f. \end{align*} \end{theorem} \begin{definition}[Vector Laplacian] The Laplacian operator can be extended on a vector field \(\vec{F}\) to the \emph{Laplacian vector} by applying the Laplacian to each component: \[ \vlaplacian \vec{F} = (\laplacian F_x)\uvec{x} + (\laplacian F_y)\uvec{y} + (\laplacian F_z)\uvec{z} . \] The vector Laplacian can also be defined as \[ \vlaplacian \vec{F} = \grad (\div \vec{F}) - \curl (\curl \vec{F}). \] \end{definition} \begin{theorem}[Product rules and second derivatives] Let \(f,g\) be sufficiently differentiable scalar functions \(D \subseteq\mathbb{R}^m \to \mathbb{R}\) and \(\vec{A}, \vec{B}\) be sufficiently differentiable vector fields in \(\mathbb{R}^m\) (with \(m = 2\) or 3 for equations with the curl). \begin{itemize} \item Rules with the gradient \begin{align*} \grad (\div \vec{A}) &= \curl \curl \vec{A} + \vlaplacian \vec{A} \\ \grad (f\cdot g) &= (\grad f)\cdot g + f\cdot \grad g \\ \grad (\vec{A} \dotp \vec{B}) &= (\vec{A} \dotp \grad) \vec{B} + (\vec{B} \dotp \grad) \vec{A} \\ & + \vec{A} \crossp (\curl \vec{B}) + \vec{B} \crossp (\curl \vec{A}) \end{align*} \item Rules with the divergence \begin{align*} \div (\grad f) &= \laplacian f \\ \div (\curl \vec{A}) &= 0 \\ \div (f\cdot \vec{A}) &= (\grad f) \dotp \vec{A} + f\cdot (\div \vec{A}) \\ \div (\vec{A}\crossp\vec{B}) &= (\curl \vec{A})\dotp \vec{B} - \vec{A} \cdot (\curl\vec{B}) \end{align*} \item Rules with the curl \begin{align*} \curl (\grad f) &= \vec{0} \\ \curl (\curl \vec{A}) &= \grad (\div \vec{A}) - \vlaplacian \vec{A} \\ \curl (\vlaplacian \vec{A}) &= \vlaplacian (\curl \vec{A}) \\ \curl (f\cdot \vec{A}) &= (\grad f)\crossp \vec{A} + f\cdot \curl \vec{A} \\ \curl (\vec{A}\crossp\vec{B}) &= (\vec{B} \dotp \grad) \vec{A} - (\vec{A} \dotp \grad) \vec{B} \\ &+ \vec{A} \dotp (\div \vec{B}) - \vec{B} \dotp (\div \vec{A}) \end{align*} \end{itemize} \end{theorem} \section{Electrodynamics Recap} \subsection{Maxwell's equations} Maxwell's equations in matter in their integral form are \begin{subequations} \begin{align} \oint_{\partial S} \vec{E} \dotp d\vec{l} &= -\frac{d}{dt} \int_S \vec{B} \dotp d\vec{s}, \\ \oint_{\partial S} \vec{H} \dotp d\vec{l} &= \int_S \left( \vec{J} + \partial_t \vec{D} \right) \dotp d\vec{s}, \\ \oint_{\partial V} \vec{D} \dotp d\vec{s} &= \int_V \rho \,dv, \\ \oint_{\partial V} \vec{B} \dotp d\vec{s} &= 0. \end{align} \end{subequations} Where \(\vec{J}\) and \(\rho\) are the \emph{free current density} and \emph{free charge density} respectively. \subsection{Linear materials and boundary conditions} Inside of so called isotropic linear materials fluxes and current densities are proportional and parallel to the fields, i.e. \begin{align*} \vec{D} &= \epsilon \vec{E}, & \vec{J} &= \sigma \vec{E}, & \vec{B} &= \mu \vec{H}. \end{align*} Where two materials meet the following boundary conditions must be satisfied: \begin{align*} &\uvec{n} \dotp \vec{D}_1 = \uvec{n} \dotp \vec{D}_2 + \rho_s & &\uvec{n} \crossp \vec{E}_1 = \uvec{n} \crossp \vec{E}_2 \\ &\uvec{n} \dotp \vec{J}_1 = \uvec{n} \dotp \vec{J}_2 - \partial_t \rho_s & &\uvec{n} \crossp \vec{H}_1 = \uvec{n} \crossp \vec{H}_2 + \vec{J}_s \\ &\uvec{n} \dotp \vec{B}_1 = \uvec{n} \dotp \vec{B}_2 - \partial_t \rho_s & &\uvec{n} \crossp \vec{M}_1 = \uvec{n} \crossp \vec{M}_2 + \vec{J}_{s,m} \end{align*} \subsection{Potentials} Because \(\vec{E}\) is often conservative (\(\curl \vec{E} = \vec{0}\)), and \(\div \vec{B}\) is always zero, it is often useful to use \emph{potentials} to describe these quantities instead. The electric scalar potential and magnetic vector potentials are in their integral form: \begin{align*} \varphi &= \int_\mathsf{A}^\mathsf{B} \vec{E} \dotp d\vec{l}, & \vec{A} &= \frac{\mu_0}{4\pi} \int_V \frac{\vec{J} dv}{R} \end{align*} With differential operators: \begin{align*} \vec{E} &= - \grad \varphi, & \mu_0 \vec{J} &= - \vlaplacian \vec{A}. \end{align*} By taking the divergence on both sides of the equation with the electric field we get \(\rho/\epsilon = - \laplacian \varphi\), which also contains the Laplacian operator. We will study equations with of form in \S \ref{sec:poisson}. % \subsection{Energy density} \section{Boundary value problems} \subsection{Steady-state flow analysis} The equatation for the steady-state analysis is \begin{equation} \laplacian \varphi = 0 \quad\text{for}\quad \vec{r} \in \Omega, \end{equation} with its boundary conditions: \( \varphi = 0 \text{ for } \vec{r}\in\Gamma_e, \varphi = U \text{ for } \vec{r}\in\Gamma_b, \nabla_\uvec{n} \varphi = 0 \text{ for } \vec{r}\in\Gamma_s. \) \subsection{Magnetostatic analysis} The equation for the magnetostatic analysis is \begin{equation} \vlaplacian \vec{A} = -\mu_0 \vec{J} \quad\text{for}\quad \vec{r} \in \Omega. \end{equation} \subsection{Magnetoquasistatic analysis} The equation for the magnetoquasistatic analysis is \begin{equation} \vlaplacian \vec{A} - \mu_0 \sigma \partial_t \vec{A} = -\mu_0 \vec{J}_q \quad\text{for}\quad \vec{r} \in \Omega. \end{equation} \subsection{Electrodynamic analysis} The equationsfor the electrodynamic analysis are \begin{subequations} \begin{gather} \vlaplacian \vec{E} - \mu \sigma \partial_t \vec{E} - \mu \epsilon \partial^2_t \vec{E} = \vec{0}, \\ \vlaplacian \vec{H} - \mu \sigma \partial_t \vec{H} - \mu \epsilon \partial^2_t \vec{H} = \vec{0}. \end{gather} \end{subequations} \section{Laplace and Poisson's equations} \label{sec:poisson} The so called \emph{Poisson's equation} has the form \[ \laplacian \varphi = - \frac{\rho}{\epsilon}. \] When the right side of the equation is zero, it is also known as \emph{Laplace's equation}. \subsection{Easy solutions of Laplace and Poisson's equations} \subsubsection{Geometry with zenithal and azimuthal symmetries (\"Ubung 2)} Suppose we have a geometry where, using spherical coordinates, there is a symmetry such that the solution does not depend on \(\phi\) or \(\theta\). Then Laplace's equation reduces down to \[ \laplacian \varphi = \frac{1}{r^2} \partial_r ( r^2 \partial_r \varphi) = 0, \] which has solutions of the form \[ \varphi(r) = \frac{C_1}{r} + C_2. \] \subsection{Geometry with azimuthal and translational symmetry (\"Ubung 3)} Suppose that when using cylindrical coordinates, the solution does not depend on \(\phi\) or \(z\). Then Laplace's equation becomes \[ \laplacian A_z = \frac{1}{r} \partial_r (r \partial_r A_z) = 0. \] \end{document}