ElMag Zusammenfassung

Naoki Pross - naoki.pross@ost.ch

Fall Semseter 2021

Contents

1 Vector Analysis Recap 1
1.1 Partial derivatives 1
1.2 Vector derivatives 1
1.3 Second vector derivatives 2
2 Electrodynamics Recap 2
2.1 Maxwell's equations 2
2.2 Linear materials and boundary conditions 2
2.3 Potentials 2
3 Laplace and Poisson's equations 3
3.1 Easy solutions of Laplace and Poisson's equations 3
3.1.1 Geometry with zenithal and azimuthal symmetries (Übung 2) 3
3.2 Geometry with azimuthal and translational symmetry (Übung 3) 3

License

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

1 Vector Analysis Recap

1.1 Partial derivatives

Definition 1 (Partial derivative). A vector valued function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, with $\mathbf{v} \in \mathbb{R}^{m}$, has a partial derivative with respect to v_{i} defined as

$$
\partial_{v_{i}} f(\mathbf{v})=\frac{\partial f}{\partial v_{i}}=\lim _{h \rightarrow 0} \frac{f\left(\mathbf{v}+h \mathbf{e}_{i}\right)-f(\mathbf{v})}{h}
$$

Theorem 1 (Integration of partial derivatives). Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a partially differentiable function of many x_{i}. When x_{i} is indipendent with respect to all other $x_{j}(0<j \leq m, j \neq i)$ then

$$
\int \partial_{x_{i}} f d x_{i}=f+C
$$

where C is a function of x_{1}, \ldots, x_{m} but not of x_{i}.
To illustrate the previous theorem, in a simpler case with $f(x, y)$, we get

$$
\int \partial_{x} f(x, y) d x=f(x, y)+C(y)
$$

Beware that this is valid only if x and y are indipendent. If there is a relation $x(y)$ or $y(x)$ the above does not hold.

1.2 Vector derivatives

Definition 2 (Gradient vector). The gradient of a function $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{m}$ is a column vector containing the partial derivatives in each direction.

$$
\nabla f(\mathbf{x})=\sum_{i=1}^{m} \partial_{x_{i}} f(\mathbf{x}) \mathbf{e}_{i}=\left(\begin{array}{c}
\partial_{x_{1}} f(\mathbf{x}) \\
\vdots \\
\partial_{x_{m}} f(\mathbf{x})
\end{array}\right)
$$

Theorem 2 (Gradient in curvilinear coordinates). Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a scalar field. In cylindrical coordinates (r, ϕ, z)

$$
\nabla f=\hat{\mathbf{r}} \partial_{r} f+\hat{\phi} \frac{1}{r} \partial_{\phi} f+\hat{\mathbf{z}} \partial_{z} f
$$

and in spherical coordinates (r, θ, ϕ)

$$
\boldsymbol{\nabla} f=\hat{\mathbf{r}} \partial_{r} f+\hat{\boldsymbol{\theta}} \frac{1}{r} \partial_{\theta} f+\hat{\boldsymbol{\phi}} \frac{1}{r \sin \theta} \partial_{\phi} f
$$

Definition 3 (Divergence). Let $\mathbf{F}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be a vector field. The divergence of $\mathbf{F}=\left(F_{x_{1}}, \ldots, F_{x_{m}}\right)^{t}$ is

$$
\boldsymbol{\nabla} \cdot \mathbf{F}=\sum_{i=1}^{m} \partial_{x_{i}} F_{x_{i}},
$$

as suggested by the (ab)use of the dot product notation.

Theorem 3 (Divergence in curvilinear coordinates). Let $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a field. In cylindrical coordinates (r, ϕ, z)

$$
\nabla \cdot \mathbf{F}=\frac{1}{r} \partial_{r}\left(r F_{r}\right)+\frac{1}{r} \partial_{\phi} F_{\phi}+\partial_{z} F_{z},
$$

and in spherical coordinates (r, θ, ϕ)

$$
\begin{aligned}
\nabla \cdot \mathbf{F}=\frac{1}{r^{2}} \partial_{r}\left(r^{2} F_{r}\right) & +\frac{1}{r \sin \theta} \partial_{\theta}\left(\sin \theta F_{\theta}\right) \\
& +\frac{1}{r \sin \theta} \partial_{\phi} F_{\phi}
\end{aligned}
$$

Theorem 4 (Divergence theorem, Gauss's theorem). Because the flux on the boundary ∂V of a volume V contains information of the field inside of V, it is possible relate the two with

$$
\int_{V} \boldsymbol{\nabla} \cdot \mathbf{F} d v=\oint_{\partial V} \mathbf{F} \cdot d \mathbf{s}
$$

Definition 4 (Curl). Let \mathbf{F} be a vector field. In 2 dimensions

$$
\boldsymbol{\nabla} \times \mathbf{F}=\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) \hat{\mathbf{z}}
$$

And in 3D

$$
\boldsymbol{\nabla} \times \mathbf{F}=\left(\begin{array}{c}
\partial_{y} F_{z}-\partial_{z} F_{y} \\
\partial_{z} F_{x}-\partial_{x} F_{z} \\
\partial_{x} F_{y}-\partial_{y} F_{x}
\end{array}\right)=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|
$$

Definition 5 (Curl in curvilinear coordinates). Let $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a field. In cylindrical coordinates (r, ϕ, z)

$$
\begin{aligned}
\boldsymbol{\nabla} \times \mathbf{F}= & \left(\frac{1}{r} \partial_{\phi} F_{z}-\partial_{z} F_{\phi}\right) \hat{\mathbf{r}} \\
& +\left(\partial_{z} F_{r}-\partial_{r} F_{z}\right) \hat{\boldsymbol{\phi}} \\
& +\frac{1}{r}\left[\partial_{r}\left(r F_{\phi}\right)-\partial_{\phi} F_{r}\right] \hat{\mathbf{z}}
\end{aligned}
$$

and in spherical coordinates (r, θ, ϕ)

$$
\begin{aligned}
\boldsymbol{\nabla} \times \mathbf{F}= & \frac{1}{r \sin \theta}\left[\partial_{\theta}\left(\sin \theta F_{\phi}\right)-\partial_{\phi} F_{\theta}\right] \hat{\mathbf{r}} \\
& +\frac{1}{r}\left[\frac{1}{\sin \theta} \partial_{\phi} F_{r}-\partial_{r}\left(r F_{\phi}\right)\right] \hat{\boldsymbol{\theta}} \\
& +\frac{1}{r}\left[\partial_{r}\left(r F_{\theta}\right)-\partial_{\theta} F_{r}\right] \hat{\boldsymbol{\phi}} .
\end{aligned}
$$

Theorem 5 (Stokes' theorem).

$$
\int_{S} \boldsymbol{\nabla} \times \mathbf{F} \cdot d \mathbf{s}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}
$$

1.3 Second vector derivatives

Definition 6 (Laplacian operator). A second vector derivative is so important that it has a special name. For a scalar function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ the divergence of the gradient

$$
\nabla^{2} f=\nabla \cdot(\nabla f)=\sum_{i=1}^{m} \partial_{x_{i}}^{2} f_{x_{i}}
$$

is called the Laplacian operator.
Theorem 6 (Laplacian in curvilinear coordinates). Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a scalar field. In cylindrical coordinates (r, ϕ, z)

$$
\nabla^{2} f=\frac{1}{r} \partial_{r}\left(r \partial_{r} f\right)+\frac{1}{r^{2}} \partial_{\phi}^{2} f+\partial_{z}^{2} f
$$

and in spherical coordinates (r, θ, ϕ)

$$
\begin{aligned}
\nabla^{2} f=\frac{1}{r^{2}} \partial_{r}\left(r^{2} \partial_{r} f\right) & +\frac{1}{r^{2} \sin \theta} \partial_{\theta}\left(\sin \theta \partial_{\theta} f\right) \\
& +\frac{1}{r^{2} \sin ^{2} \theta} \partial_{\phi}^{2} f
\end{aligned}
$$

Definition 7 (Vector Laplacian). The Laplacian operator can be extended on a vector field \mathbf{F} to the Laplacian vector by applying the Laplacian to each component:

$$
\nabla^{2} \mathbf{F}=\left(\nabla^{2} F_{x}\right) \hat{\mathbf{x}}+\left(\nabla^{2} F_{y}\right) \hat{\mathbf{y}}+\left(\nabla^{2} F_{z}\right) \hat{\mathbf{z}}
$$

The vector Laplacian can also be defined as

$$
\boldsymbol{\nabla}^{2} \mathbf{F}=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{F})-\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{F})
$$

Theorem 7 (Product rules and second derivatives). Let f, g be sufficiently differentiable scalar functions $D \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}$ and \mathbf{A}, \mathbf{B} be sufficiently differentiable vector fields in \mathbb{R}^{m} (with $m=2$ or 3 for equations with the curl).

- Rules with the gradient

$$
\begin{aligned}
\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A}) & =\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \mathbf{A}+\boldsymbol{\nabla}^{2} \mathbf{A} \\
\boldsymbol{\nabla}(f \cdot g) & =(\boldsymbol{\nabla} f) \cdot g+f \cdot \boldsymbol{\nabla} g \\
\boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{B}) & =(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A} \\
& +\mathbf{A} \times(\boldsymbol{\nabla} \times \mathbf{B})+\mathbf{B} \times(\boldsymbol{\nabla} \times \mathbf{A})
\end{aligned}
$$

- Rules with the divergence

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} f) & =\nabla^{2} f \\
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \mathbf{A}) & =0 \\
\boldsymbol{\nabla} \cdot(f \cdot \mathbf{A}) & =(\boldsymbol{\nabla} f) \cdot \mathbf{A}+f \cdot(\boldsymbol{\nabla} \cdot \mathbf{A}) \\
\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B}) & =(\boldsymbol{\nabla} \times \mathbf{A}) \cdot \mathbf{B}-\mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{B})
\end{aligned}
$$

- Rules with the curl

$$
\begin{aligned}
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} f) & =\mathbf{0} \\
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{A}) & =\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})-\boldsymbol{\nabla}^{2} \mathbf{A} \\
\boldsymbol{\nabla} \times\left(\boldsymbol{\nabla}^{2} \mathbf{A}\right) & =\boldsymbol{\nabla}^{2}(\boldsymbol{\nabla} \times \mathbf{A}) \\
\boldsymbol{\nabla} \times(f \cdot \mathbf{A}) & =(\boldsymbol{\nabla} f) \times \mathbf{A}+f \cdot \boldsymbol{\nabla} \times \mathbf{A} \\
\boldsymbol{\nabla} \times(\mathbf{A} \times \mathbf{B}) & =(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}-(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B} \\
& +\mathbf{A} \cdot(\boldsymbol{\nabla} \cdot \mathbf{B})-\mathbf{B} \cdot(\boldsymbol{\nabla} \cdot \mathbf{A})
\end{aligned}
$$

2 Electrodynamics Recap

2.1 Maxwell's equations

Maxwell's equations in matter in their integral form are

$$
\begin{align*}
& \oint_{\partial S} \mathbf{E} \cdot d \mathbf{l}=-\frac{d}{d t} \int_{S} \mathbf{B} \cdot d \mathbf{s} \tag{1a}\\
& \oint_{\partial S} \mathbf{H} \cdot d \mathbf{l}=\int_{S}\left(\mathbf{J}+\partial_{t} \mathbf{D}\right) \cdot d \mathbf{s}, \tag{1b}\\
& \oint_{\partial V} \mathbf{D} \cdot d \mathbf{s}=\int_{V} \rho d v \tag{1c}\\
& \oint_{\partial V} \mathbf{B} \cdot d \mathbf{s}=0 . \tag{1d}
\end{align*}
$$

Where \mathbf{J} and ρ are the free current density and free charge density respectively.

2.2 Linear materials and boundary conditions

Inside of so called isotropic linear materials fluxes and current densities are proportional and parallel to the fields, i.e.

$$
\mathbf{D}=\epsilon \mathbf{E}, \quad \mathbf{J}=\sigma \mathbf{E}, \quad \mathbf{B}=\mu \mathbf{H}
$$

Where two materials meet the following boundary conditions must be satisfied:

$$
\begin{array}{ll}
\hat{\mathbf{n}} \cdot \mathbf{D}_{1}=\hat{\mathbf{n}} \cdot \mathbf{D}_{2}+\rho_{s} & \hat{\mathbf{n}} \times \mathbf{E}_{1}=\hat{\mathbf{n}} \times \mathbf{E}_{2} \\
\hat{\mathbf{n}} \cdot \mathbf{J}_{1}=\hat{\mathbf{n}} \cdot \mathbf{J}_{2}-\partial_{t} \rho_{s} & \hat{\mathbf{n}} \times \mathbf{H}_{1}=\hat{\mathbf{n}} \times \mathbf{H}_{2}+\mathbf{J}_{s} \\
\hat{\mathbf{n}} \cdot \mathbf{B}_{1}=\hat{\mathbf{n}} \cdot \mathbf{B}_{2}-\partial_{t} \rho_{s} & \hat{\mathbf{n}} \times \mathbf{M}_{1}=\hat{\mathbf{n}} \times \mathbf{M}_{2}+\mathbf{J}_{s, m}
\end{array}
$$

2.3 Potentials

Because \mathbf{E} is often conservative ($\boldsymbol{\nabla} \times \mathbf{E}=\mathbf{0}$), and $\boldsymbol{\nabla} \cdot \mathbf{B}$ is always zero, it is often useful to use potentials to describe these quantities instead. The electric scalar potential and magnetic vector potentials are in their integral form:

$$
\varphi=\int_{\mathrm{A}}^{\mathrm{B}} \mathbf{E} \cdot d \mathbf{l}, \quad \mathbf{A}=\frac{\mu_{0}}{4 \pi} \int_{V} \frac{\mathbf{J} d v}{R}
$$

With differential operators:

$$
\mathbf{E}=-\boldsymbol{\nabla} \varphi, \quad \mu_{0} \mathbf{J}=-\nabla^{2} \mathbf{A} .
$$

By taking the divergence on both sides of the equation with the electric field we get $\rho / \epsilon=-\nabla^{2} \varphi$, which also contains the Laplacian operator. We will study equations with of form in $\S 3$.

3 Laplace and Poisson's equations

The so called Poisson's equation has the form

$$
\nabla^{2} \varphi=-\frac{\rho}{\epsilon}
$$

When the right side of the equation is zero, it is also known as Laplace's equation.

3.1 Easy solutions of Laplace and Poisson's equations

3.1.1 Geometry with zenithal and azimuthal

 symmetries (Übung 2)Suppose we have a geometry where, using spherical coordinates, there is a symmetry such that the solution does not depend on ϕ or θ. Then Laplace's equation reduces down to

$$
\nabla^{2} \varphi=\frac{1}{r^{2}} \partial_{r}\left(r^{2} \partial_{r} \varphi\right)=0
$$

which has solutions of the form

$$
\varphi(r)=\frac{C_{1}}{r}+C_{2} .
$$

3.2 Geometry with azimuthal and translational symmetry (Übung 3)

Suppose that when using cylindrical coordinates, the solution does not depend on ϕ or z. Then Laplace's equation becomes

$$
\nabla^{2} A_{z}=\frac{1}{r} \partial_{r}\left(r \partial_{r} A_{z}\right)=0
$$

