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1 Vector Analysis Recap

1.1 Partial derivatives

Definition 1 (Partial derivative). A vector valued
function f : R™ — R, with v € R™, has a partial
derivative with respect to v; defined as

0f _ . flv+he) — f(v)
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Theorem 1 (Integration of partial derivatives).
Let f : R™ — R be a partially differentiable func-
tion of many z;. When z; is indipendent with re-
spect to all other x; (0 < j < 'm,j # i) then

/axifda:i el

where C' is a function of z1,...,z,, but not of x;.

To illustrate the previous theorem, in a simpler
case with f(z,y), we get

/axf(:zuy) dx = f(x,y) + C(y).

Beware that this is valid only if z and y are indipen-
dent. If there is a relation z(y) or y(x) the above
does not hold.

1.2 Vector derivatives

Definition 2 (Gradient vector). The gradient of a
function f(x),x € R™ is a column vector containing
the partial derivatives in each direction.
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Theorem 2 (Gradient in curvilinear coordinates).
Let f : R® — R be a scalar field. In cylindrical
coordinates (r, ¢, z)
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and in spherical coordinates (7,6, ¢)
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Definition 3 (Divergence). Let F : R — R™ be a

vector field. The divergence of F = (F,, ..., F,, )!
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as suggested by the (ab)use of the dot product no-
tation.

Theorem 3 (Divergence in curvilinear coordinates).
Let F : R3 — R3 be a field. In cylindrical coordi-
nates (r, ¢, z)
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and in spherical coordinates (r, 6, @)
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Theorem 4 (Divergence theorem, Gauss’s theo-
rem). Because the flux on the boundary 0V of a
volume V' contains information of the field inside of
V, it is possible relate the two with

/V-de:yg F - ds.
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Definition 4 (Curl). Let F be a vector field. In 2
dimensions

VXF = (0,F, — 0,F,) 2.

And in 3D
Oy F, — 0. F, Xy zZ
VXF=|0,F, —0,F, | =0, 0y 0.
0 Fy — Oy Fy F, F, F,

Definition 5 (Curl in curvilinear coordinates). Let
F : R? = R? be a field. In cylindrical coordinates

(r, ¢, 2)
VxF = (i%Fz - 8ZF¢> #
+(0.F, — 0,F.) ¢
+ % {&(rﬂ,) — 8¢FT} Z,
and in spherical coordinates (7, 6, ¢)
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Theorem 5 (Stokes’ theorem).

/VXF-ds:¢ F.dr
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1.3 Second vector derivatives

Definition 6 (Laplacian operator). A second vec-
tor derivative is so important that it has a special
name. For a scalar function f : R™ — R the diver-
gence of the gradient

V2f=V(Vf) =
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is called the Laplacian operator.

Theorem 6 (Laplacian in curvilinear coordinates).
Let f : R® — R be a scalar field. In cylindrical
coordinates (r, ¢, z)

1 1
VAf = —0n(r0 f) + 505f + 02 f
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and in spherical coordinates (r, 6, ¢)
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Definition 7 (Vector Laplacian). The Laplacian
operator can be extended on a vector field F to the
Laplacian vector by applying the Laplacian to each
component:
V2F = (V2 E,)% +

(V2F,))§ + (V2 F.)z.

The vector Laplacian can also be defined as

V2F =V(V-F) - VX(VxF).
Theorem 7 (Product rules and second derivatives).
Let f, g be sufficiently differentiable scalar functions
D CR™ — R and A, B be sufficiently differentiable
vector fields in R™ (with m = 2 or 3 for equations
with the curl).

e Rules with the gradient

V(V-A)=VXVXA+VZA
V(f-9)=(Vf)-g+f Vg
V(A-B)=(A-V)B+ (B-V)A

+AX(VXB)+BXx (VxA)

o Rules with the divergence

V(Vf)=V?f

V(VxA)=0
V(f-A)=(Vf)-A+[-(V-A)

V- (AxB)=(VxA)-B-A.(VxB)

¢ Rules with the curl

x(Vf)=0
Vx(Vx A)=V(V-A)-VZA
Vx(V? ):VQ(VXA)
VX(f-A)= (Vf)xA+f Vx A
Vx(AxB) (B-V)A-(A-V)B
-(VoB)—B-(V-A)

2 Electrodynamics Recap

2.1 Maxwell’s equations
Maxwell’s equations in matter in their integral form
are
d
E.-dl= B ds, (1a)
H.dl = / (J+0D)-ds,  (ib)
as s
D-ds:/ pdv, (1c)
av v
B-ds = 0. (1d)
av

Where J and p are the free current density and free
charge density respectively.

2.2 Linear materials and boundary con-
ditions
Inside of so called isotropic linear materials fluxes

and current densities are proportional and parallel
to the fields, i.e.

D =c¢E, J =0E, B =y H.

Where two materials meet the following bound-
ary conditions must be satisfied:

ﬁXElzﬁXEQ
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2.3 Potentials

Because E is often conservative (VX E = 0), and
V- B is always zero, it is often useful to use poten-
tials to describe these quantities instead. The elec-
tric scalar potential and magnetic vector potentials
are in their integral form:

B
Jdv
= E.dl A=
v /A ’ 47T ‘R



With differential operators:
E=-Vy, pod = — VZA.

By taking the divergence on both sides of the equa-
tion with the electric field we get p/e = — V2,
which also contains the Laplacian operator. We will
study equations with of form in §3.

3 Laplace and Poisson’s equa-
tions

The so called Poisson’s equation has the form

When the right side of the equation is zero, it is also
known as Laplace’s equation.

3.1 Easy solutions of Laplace and Pois-
son’s equations

3.1.1 Geometry with zenithal and azimuthal
symmetries (Ubung 2)

Suppose we have a geometry where, using spherical
coordinates, there is a symmetry such that the so-
lution does not depend on ¢ or 6. Then Laplace’s
equation reduces down to

1
2 2 _
Vep= 2 Or(r<0,p) =0,

which has solutions of the form

= — 4+ (5.
r

o(r)

3.2 Geometry with azimuthal and trans-
lational symmetry (Ubung 3)

Suppose that when using cylindrical coordinates,
the solution does not depend on ¢ or z. Then
Laplace’s equation becomes

1
V2ZA, = -0,(roA.) = 0.
T
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