aboutsummaryrefslogtreecommitdiffstats
path: root/FuVar.tex
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--FuVar.tex58
1 files changed, 54 insertions, 4 deletions
diff --git a/FuVar.tex b/FuVar.tex
index 7658499..5d1fdb9 100644
--- a/FuVar.tex
+++ b/FuVar.tex
@@ -3,7 +3,7 @@
% !TeX root = FuVar.tex
%% TODO: publish to CTAN
-\documentclass[twocolumn]{tex/hsrzf}
+\documentclass[twocolumn, margin=normal]{tex/hsrzf}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Packages
@@ -27,6 +27,9 @@
\usepackage{amsmath}
\usepackage{amsthm}
+% Layout
+\usepackage{enumitem}
+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Metadata
@@ -66,6 +69,15 @@
\newtheorem{definition}{Definition}
\newtheorem{lemma}{Lemma}
+\setlist[description]{
+ align = right, labelwidth = 2cm, leftmargin = !,
+ format = { \normalfont\itshape }
+}
+
+\setlist[itemize]{
+ align = right, labelwidth = 5mm, leftmargin = !
+}
+
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Document
@@ -74,8 +86,38 @@
\maketitle
\tableofcontents
-\section*{License}
-\doclicenseThis
+\section{Fields and vector spaces}
+\begin{definition}[Field]
+ A field is a set \(F\) with two binary operators \(+\) and \(\cdot\) that map
+ \(F\times F \to F\) and follow the \emph{field axioms} listed below. We let
+ \(a, (-a), b, b^{-1} \in F\) and \(\star\) stand for either \(\cdot\) or \(+\).
+ \begin{description}[leftmargin=2.5cm]
+ \item[Associativity] \((a \star b) \star c = a \star (b \star c)\)
+ \item[Commutativity] \(a \star b = b \star a\)
+ \item[Identities] \(0 + a = a\) and \(1\cdot a = a\)
+ \item[Inverses]
+ \begin{itemize}
+ \item \(a + (-a) = 0\) and
+ \item \(b \cdot b^{-1} = 1\) where \(b \neq 0\)
+ \end{itemize}
+ \item[Distributivity] \(a \cdot (b + c) = a\cdot b + a \cdot c\)
+ \end{description}
+\end{definition}
+
+\begin{theorem}
+ \(\Rset\) is a field.
+\end{theorem}
+
+\begin{definition}[Vector space]
+ A vector \(V\) space over a field \(F\)
+\end{definition}
+
+\begin{theorem}
+ \(\Rset^n\) is a vector space.
+\end{theorem}
+
+\begin{definition}[Row and column vectors]
+\end{definition}
\section{Scalar Fields}
@@ -86,7 +128,7 @@
\begin{definition}[Partial derivative of a scalar field]
Let \(f: \Rset^n \to \Rset\), the \emph{partial} derivative of \(f\) with
- respect to \(x_k\), (\(0 < k < n\)), is defined as
+ respect to \(x_k\), (\(0 < k \leq n\)), is defined as
\[
\frac{\partial f}{\partial x_k} :=
\lim_{h \to 0} \frac{f(x_1, \dots, x_k + h, \dots, x_n)
@@ -123,4 +165,12 @@ The above can be used to calculate the one dimensional derivative of an implicit
\]
\end{definition}
+
+\section*{License}
+\doclicenseText
+
+\begin{center}
+ \doclicenseImage
+\end{center}
+
\end{document}