aboutsummaryrefslogtreecommitdiffstats
path: root/FuVar.tex
diff options
context:
space:
mode:
Diffstat (limited to 'FuVar.tex')
-rw-r--r--FuVar.tex293
1 files changed, 200 insertions, 93 deletions
diff --git a/FuVar.tex b/FuVar.tex
index aa4ba54..dba65b3 100644
--- a/FuVar.tex
+++ b/FuVar.tex
@@ -10,6 +10,7 @@
%% TODO: publish to CTAN
\usepackage{tex/hsrstud}
+\usepackage{mathtools}
%% Language configuration
\usepackage{polyglossia}
@@ -46,14 +47,6 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros and settings
-%% number sets
-\newcommand\Nset{\mathbb{N}}
-\newcommand\Zset{\mathbb{Z}}
-\newcommand\Qset{\mathbb{Q}}
-\newcommand\Rset{\mathbb{R}}
-\newcommand\Cset{\mathbb{C}}
-\newcommand\T{\mathrm{T}}
-
%% Theorems
\newtheoremstyle{fuvarzf} % name of the style to be used
{\topsep}
@@ -67,8 +60,14 @@
\theoremstyle{fuvarzf}
\newtheorem{theorem}{Theorem}
+\newtheorem{proposition}{Proposition}
+\newtheorem{method}{Method}
\newtheorem{definition}{Definition}
\newtheorem{lemma}{Lemma}
+\newtheorem{remark}{Remark}
+
+\DeclareMathOperator{\tr}{\mathrm{tr}}
+
\setlist[description]{
format = { \normalfont\itshape }
@@ -80,115 +79,223 @@
\begin{document}
\maketitle
-\tableofcontents
-
-\section{Fields and vector spaces}
-
-\begin{definition}[Field]
- A field is a set \(F\) with two binary operators \(+\) and \(\cdot\) that map
- \(F\times F \to F\) and follow the \emph{field axioms} listed below. We let
- \(a, b \in F\) and \(\star\) stands for \(\cdot\) or \(+\).
- \begin{description}
- \item[Associativity:] \((a \star b) \star c = a \star (b \star c)\)
- \item[Commutativity:] \(a \star b = b \star a\)
- \item[Identities:] \(0 + a = a\) and \(1\cdot a = a\)
- \item[Inverses:]
- \(a + (-a) = 0\) and
- \(b \cdot b^{-1} = 1\) iff \(b \neq 0\)
- \item[Distributivity:] \(a \cdot (b + c) = a\cdot b + a \cdot c\)
- \end{description}
-\end{definition}
-
-\begin{theorem}
- \(\Rset\) is a field.
-\end{theorem}
+% \tableofcontents
-\begin{definition}[Vector space]
- A vector space \(U\) over a field \(F\) is a set of objects called
- \emph{vectors} equipped with two operations: \emph{addition}
- \(+: U \times U \to U\) and \emph{scalar multiplication}
- \(\cdot: F\times U \to U\), that respect the following axioms.
- Let \(\vec{u}, \vec{v}, \vec{w} \in U\) and \(a, b \in F\).
- \begin{description}
- \item[Additive associativity:] \((\vec{u} + \vec{v}) + \vec{w}
- = \vec{u} + (\vec{v} + \vec{w})\)
- \item[Additive commutativity:] \(\vec{u} + \vec{v} = \vec{v} + \vec{u}\)
- \item[Identities:] There is an element
- \(\vec{0} \in U : \vec{u} + \vec{0} = \vec{u}\)
- and \(1 \in F : 1 \cdot \vec{u} = \vec{u}\)
- \item[Additive inverse:] \(\vec{u} + (\vec{-u}) = 0\)
- \item[Compatibility of multiplication]
- \(a\cdot (b \cdot \vec{u}) = (a\cdot b) \cdot \vec{u}\)
- \item[Distributivity:]
- \((a + b) \cdot \vec{u} = a\cdot\vec{u} + b\cdot\vec{u}\) and conversely
- \(a \cdot (\vec{u} + \vec{v}) = a\cdot\vec{u} + a\cdot\vec{v}\)
- \end{description}
- And of course elements in \(F\) follow the field axioms.
-\end{definition}
+\section{Preface}
-\begin{theorem}
- \(\Rset^n = \Rset\times\cdots\times\Rset\) is a vector space.
-\end{theorem}
+These are just my personal notes of the \themodule{} course, and definitively
+not a rigorously constructed mathematical text. The good looking \LaTeX{}
+typesetting may trick you into thinking it is rigorous, but really, it is not.
-\begin{definition}[Row and column vectors]
- Although there is virtually no difference between the two, we need two type
- of \(n\)-tuples that satisfy the vector space axioms. \emph{Row} vectors are
- written horizontally and \emph{column} vectors vertically.
-\end{definition}
+\section{Derivatives of vector valued scalar functions}
-\begin{definition}[Transposition]
- Let \(\vec{u} \in \Rset^n\) be a row vector. The \emph{transpose} of
- \(\vec{u}\) denoted with \(\vec{u}^\T\) is column vector with the same
- components. Conversely if \(\vec{v}\) is a column vector then \(\vec{v}^\T\)
- is a row vector.
+\begin{definition}[Partial derivative]
+ A vector values function \(f: \mathbb{R}^m\to\mathbb{R}\), with
+ \(\vec{v}\in\mathbb{R}^m\), has a partial derivative with respect to \(v_i\)
+ defined as
+ \[
+ \partial_{v_i} f(\vec{v})
+ = f_{v_i}(\vec{v})
+ = \lim_{h\to 0} \frac{f(\vec{v} + h\vec{e}_j) - f(\vec{v})}{h}
+ \]
\end{definition}
-\section{Scalar fields}
+\begin{proposition}
+ Under some generally satisfied conditions (continuity of \(n\)-th order
+ partial derivatives) Schwarz's theorem states that it is possible to swap
+ the order of differentiation.
+ \[
+ \partial_x \partial_y f(x,y) = \partial_y \partial_x f(x,y)
+ \]
+\end{proposition}
-\begin{definition}[Scalar field]
- Confusingly we call a function \(f: \Rset^n \to \Rset\) a \emph{scalar
- field}, but this is unrelated to the previously defined field.
+\begin{definition}[Linearization]
+ A function \(f: \mathbb{R}^m\to\mathbb{R}\) has a linearization \(g\) at
+ \(\vec{x}_0\) given by
+ \[
+ g(\vec{x}) = f(\vec{x}_0)
+ + \sum_{i=1}^m \partial_{x_i} f(\vec{x}_0)(x_i - x_{i,0}) ,
+ \]
+ if all partial derviatives are defined at \(\vec{x}_0\).
\end{definition}
-\begin{definition}[Partial derivative of a scalar field]
- Let \(f: \Rset^n \to \Rset\), the \emph{partial} derivative of \(f\) with
- respect to \(x_k\), (\(0 < k \leq n\)), is defined as
+\begin{theorem}[Propagation of uncertanty]
+ Given a measurement of \(m\) values in a vector \(\vec{x}\in\mathbb{R}^m\)
+ with values given in the form \(x_i = \bar{x}_i \pm \sigma_{x_i}\), a linear
+ approximation the error of a dependent variable \(y\) is computed with
+ \[
+ y = \bar{y} \pm \sigma_y \approx f(\bar{\vec{x}})
+ \pm \sqrt{\sum_{i=1}^m \left(
+ \partial_{x_i} f(\bar{\vec{x}}) \sigma_{x_i}\right)^2}
+ \]
+\end{theorem}
+
+\begin{definition}[Gradient vector]
+ The \emph{gradient} of a function \(f(\vec{x}), \vec{x}\in\mathbb{R}^m\) is a
+ vector containing the derivatives in each direction.
\[
- \frac{\partial f}{\partial x_k} :=
- \lim_{h \to 0} \frac{f(x_1, \dots, x_k + h, \dots, x_n)
- - f(x_1, \dots, x_k, \dots, x_n)}{h}
- = \partial_{x_k} f(x, y)
+ \grad f (\vec{x}) = \sum_{i=1}^m \partial_{x_i} f(\vec{x}) \vec{e}_i
+ = \begin{pmatrix}
+ \partial_{x_1} f(\vec{x}) \\
+ \vdots \\
+ \partial_{x_m} f(\vec{x}) \\
+ \end{pmatrix}
\]
- That is, we keep all variables of \(f\) fixed, except for \(x_k\).
\end{definition}
-\begin{definition}[Tangent plane]
- For a scalar field \(f(x,y)\) we define the \emph{tangent plane} \(p(x,y)\)
- at coordinates \((x_0, y_0)\) to be:
+\begin{definition}[Directional derivative]
+ A function \(f(\vec{x})\) has a directional derivative in direction
+ \(\vec{r}\) (with \(|\vec{r}| = 1\)) given by
\[
- p(x, y) =
- f(x_0, y_0)
- + \partial_x f(x_0, y_0) (x - x_0)
- + \partial_y f(x_0, y_0) (y - y_0)
+ \frac{\partial f}{\partial\vec{r}} = \nabla_\vec{r} f = \vec{r} \dotp \grad f
\]
\end{definition}
-The above can be used to calculate the one dimensional derivative of an implicit curve.
+\begin{theorem}
+ The gradient vector always points towards \emph{the direction of steepest ascent}.
+\end{theorem}
-\begin{lemma}[Implicit derivative]
- The slope \(m\) of an implicit curve \(f(x,y)\) at the point \((x_0, y_0)\) is given by
+\subsection{Methods for maximization and minimization problems}
+
+\begin{method}[Find stationary points]
+ Given a function \(f: D \subseteq \mathbb{R}^m \to \mathbb{R}\), to
+ find its maxima and minima we shall consider the points
+ \begin{itemize}
+ \item that are on the boundary of the domain \(\partial D\),
+ \item where the gradient \(\grad f\) is not defined,
+ \item that are stationary, i.e. where \(\grad f = \vec{0}\).
+ \end{itemize}
+\end{method}
+
+\begin{method}[Determine the type of stationary point for 2 dimensions]
+ Given a scalar function of two variables \(f(x,y)\) and a stationary point
+ \(\vec{x}_s\) (where \(\grad f(\vec{x}_s) = \vec{0}\)), we define the
+ \emph{discriminant}
\[
- m = \partial_x f(x_0, y_0) / \partial_y f(x_0, y_0)
+ \Delta = \partial_x^2 f \partial_y^2 f - \partial_y \partial_x f
\]
- of course only if \(\partial_y f(x_0, y_0) \neq 0\).
-\end{lemma}
-
-\begin{definition}[Total derivative]
+ \begin{itemize}
+ \item if \(\Delta > 0\) then \(\vec{x}_s\) is an extrema, if \(\partial_x^2
+ f(\vec{x}_s) < 0\) it is a maximum, whereas if \(\partial_x^2
+ f(\vec{x}_s) > 0\) it is a minimum;
+
+ \item if \(\Delta < 0\) then \(\vec{x}_s\) is a saddle point;
+
+ \item if \(\Delta = 0\) we need to analyze further.
+ \end{itemize}
+\end{method}
+
+\begin{remark}
+ The previous method is obtained by studying the second directional derivative
+ \(\nabla_\vec{r}\nabla_\vec{r} f\) at the stationary point in direction of a
+ vector \(\vec{r} = \vec{e}_1\cos(\alpha) + \vec{e}_2\sin(\alpha)\)
+\end{remark}
+
+\begin{definition}[Hessian matrix]
+ Given a function \(f: \mathbb{R}^m \to \mathbb{R}\), the square matrix whose
+ entry at the \(i\)-th row and \(j\)-th column is the second derivative of
+ \(f\) first with respect to \(x_j\) and then to \(x_i\) is know as the
+ \emph{Hessian} matrix.
+ \(
+ \left(\mtx{H}_f\right)_{i,j} = \partial_{x_i}\partial_{x_j} f
+ \)
+ or
\[
- \dd{f}
+ \mtx{H}_f = \begin{pmatrix}
+ \partial_{x_1}\partial_{x_1} f & \cdots & \partial_{x_1}\partial_{x_m} f \\
+ \vdots & \ddots & \vdots \\
+ \partial_{x_m}\partial_{x_1} f & \cdots & \partial_{x_m}\partial_{x_m} f \\
+ \end{pmatrix}
\]
+ Because (almost always) the order of differentiation
+ does not matter, it is a symmetric matrix.
\end{definition}
+\begin{method}[Determine the type of stationary point in higher dimensions]
+ Given a scalar function of two variables \(f(x,y)\) and a stationary point
+ \(\vec{x}_s\) (where \(\grad f(\vec{x}_s) = \vec{0}\)), we compute the
+ Hessian matrix \(\mtx{H}_f(\vec{x}_s)\). Then we compute its eigenvalues
+ \(\lambda_1, \ldots, \lambda_m\) and
+ \begin{itemize}
+ \item if all \(\lambda_i > 0\), the point is a minimum;
+ \item if all \(\lambda_i < 0\), the point is a maximum;
+ \item if there are both positive and negative eigenvalues,
+ it is a saddle point.
+ \end{itemize}
+ In the other cases, when there are \(\lambda_i \leq 0\) and/or \(\lambda_i
+ \geq 0\) further analysis is required.
+\end{method}
+
+\begin{remark}
+ Recall that to compute the eigenvalues of a matrix, one must solve the
+ equation \((\mtx{H} - \lambda\mtx{I})\vec{x} = \vec{0}\). Which can be done
+ by solving the characteristic polynomial \(\det\left(\mtx{H} -
+ \lambda\mtx{I}\right) = 0\) to obtain \(\dim(\mtx{H})\) \(\lambda_i\), which
+ when plugged back in result in a overdetermined system of equations.
+\end{remark}
+
+\begin{method}[Quickly find the eigenvalues of a \(2\times 2\) matrix]
+ Let
+ \[
+ m = \frac{1}{2}\tr \mtx{H} = \frac{a + d}{2}
+ \text{ and }
+ p = \det\mtx{H} = ad - bc ,
+ \]
+ then
+ \[
+ \lambda = m \pm \sqrt{m^2 - p} .
+ \]
+\end{method}
+
+\begin{method}[Search for a constrained extremum in 2 dimensions]
+ Let \(n(x,y) = 0\) be a constraint in the search of the extrema of a function
+ \(f: D \subseteq \mathbb{R}^2 \to \mathbb{R}\). To find the extrema we look for
+ points
+ \begin{itemize}
+ \item on the boundary \(\vec{u} \in \partial D\) where \(n(\vec{u}) = 0\);
+
+ \item \(\vec{u}\) where the gradient either does not exist or is
+ \(\vec{0}\), and satisfy \(n(\vec{u}) = 0\);
+
+ \item that solve the system of equations
+ \[
+ \begin{cases}
+ \partial_x f(\vec{u}) \cdot \partial_y n(\vec{u})
+ = \partial_y f(\vec{u}) \cdot \partial_x n(\vec{u}) \\
+ n(\vec{u}) = 0
+ \end{cases}
+ \]
+ \end{itemize}
+\end{method}
+
+\begin{method}[%
+ Search for a constrained extremum in higher dimensions,
+ method of Lagrange multipliers]
+ We wish to find the extrema of \(f: D \subseteq \mathbb{R}^m \to \mathbb{R}\)
+ under \(k < m\) constraints \(n_1 = 0, \cdots, n_k = 0\). For that we consider
+ the following points:
+ \begin{itemize}
+ \item Points on the boundary \(\vec{u} \in \partial D\) that satisfy
+ \(n_i(\vec{u}) = 0\) for all \(1 \leq i \leq k\),
+
+ \item Points \(\vec{u} \in D\) where either
+ \begin{itemize}
+ \item any of \(\grad f, \grad n_1, \ldots, \grad n_k\) do not exist, or
+ \item \(\grad n_1, \ldots, \grad n_k\) are linearly \emph{dependent},
+ \end{itemize}
+ and that satisfy \(0 = n_1(\vec{u}) = \ldots = n_k(\vec{u})\).
+
+ \item Points that solve the system of \(m+k\) equations
+ \[
+ \begin{dcases}
+ \grad f(\vec{u}) = \sum_{i = 1}^k \lambda_k \grad n_i(\vec{u})
+ & (m\text{-dimensional}) \\
+ n_i(\vec{u}) = 0 & \text{ for } 1 \leq i \leq k
+ \end{dcases}
+ \]
+ The \(\lambda\) values are known as \emph{Lagrange multipliers}.
+ \end{itemize}
+\end{method}
\section*{License}
\doclicenseText