% !TeX program = xelatex % !TeX encoding = utf8 % !TeX root = FuVar.tex %% TODO: publish to CTAN \documentclass[twocolumn, margin=small]{tex/hsrzf} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Packages %% TODO: publish to CTAN \usepackage{tex/hsrstud} %% Language configuration \usepackage{polyglossia} \setdefaultlanguage{english} %% License configuration \usepackage[ type={CC}, modifier={by-nc-sa}, version={4.0}, lang={english}, ]{doclicense} %% Math \usepackage{amsmath} \usepackage{amsthm} \usepackage{mathtools} %% Layout \usepackage{enumitem} \usepackage{booktabs} \usepackage{footmisc} %% Nice drwaings \usepackage{tikz} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Metadata \course{Elektrotechnik} \module{FuVar} \semester{Spring Semseter 2021} \authoremail{naoki.pross@ost.ch} \author{\textsl{Naoki Pross} -- \texttt{\theauthoremail}} \title{Notes of ``Funktionen mehrerer Variablen''} \date{\thesemester} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Macros and settings \setlength{\droptitle}{-1cm} %% Theorems \newtheoremstyle{fuvarzf} % name of the style to be used {\topsep} {\topsep} {} {0pt} {\bfseries} {.} { } { } \theoremstyle{fuvarzf} \newtheorem{theorem}{Theorem} \newtheorem{method}{Method} \newtheorem{application}{Application} \newtheorem{definition}{Definition} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \DeclareMathOperator{\tr}{\mathrm{tr}} \setlist[description]{ format = { \normalfont\itshape } } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Document \begin{document} \maketitle % \tableofcontents \section{Preface} These are just my personal notes of the \themodule{} course, and definitively not a rigorously constructed mathematical text. The good looking \LaTeX{} typesetting may trick you into thinking it is rigorous, but really, it is not. \section{Derivatives of vector valued scalar functions} \begin{definition}[Partial derivative] A vector valued function \(f: \mathbb{R}^m\to\mathbb{R}\), with \(\vec{v}\in\mathbb{R}^m\), has a partial derivative with respect to \(v_i\) defined as \[ \partial_{v_i} f(\vec{v}) % = f_{v_i}(\vec{v}) = \frac{\partial f}{\partial v_i} = \lim_{h\to 0} \frac{f(\vec{v} + h\vec{e}_i) - f(\vec{v})}{h} \] \end{definition} \begin{theorem}(Schwarz's theorem, symmetry of partial derivatives) Under some generally satisfied conditions (continuity of \(n\)-th order partial derivatives) Schwarz's theorem states that it is possible to swap the order of differentiation. \[ \partial_x \partial_y f(x,y) = \partial_y \partial_x f(x,y) \] \end{theorem} \begin{application}[Find the slope of an implicit curve] Let \(f(x,y) = 0\) be an implicit curve. Its slope at any point where \(\partial_y f \neq 0\) is \(m = - \partial_x f / \partial_y f\) \end{application} \begin{definition}[Total differential] The total differential \(df\) of \(f:\mathbb{R}^m\to\mathbb{R}\) is \[ df = \sum_{i=1}^m \partial_{x_i} f\cdot dx . \] That reads, the \emph{total} change is the sum of the change in each direction. This implies \[ \frac{df}{dx_k} = \frac{\partial f}{\partial x_k} + \sum_{i \in \{1 \leq i \leq m : i \neq k\}} \frac{\partial f}{\partial x_i} \cdot \frac{dx_i}{dx_k} , \] i.e. the change in direction \(x_k\) is how \(f\) changes in \(x_k\) (ignoring other directions) plus, how \(f\) changes with respect to each other variable \(x_i\) times how they (\(x_i\)) change with respect to \(x_k\). \end{definition} \begin{application}[Linearization] A function \(f: \mathbb{R}^m\to\mathbb{R}\) has a linearization \(g\) at \(\vec{x}_0\) given by \[ g(\vec{x}) = f(\vec{x}_0) + \sum_{i=1}^m \partial_{x_i} f(\vec{x}_0)(x_i - x_{i,0}) , \] if all partial derivatives are defined at \(\vec{x}_0\). With the gradient (defined below) \(g(\vec{x}) = f(\vec{x}_0) + \grad f(\vec{x}_0) \dotp (\vec{x} - \vec{x}_0)\). \end{application} \begin{application}[Propagation of uncertanty] Given a measurement of \(m\) values in a vector \(\vec{x}\in\mathbb{R}^m\) with values given in the form \(x_i = \bar{x}_i \pm \sigma_{x_i}\), a linear approximation of the error of a dependent variable \(y = f(\vec{x})\) is computed with \[ y = \bar{y} \pm \sigma_y \approx f(\bar{\vec{x}}) \pm \sqrt{\sum_{i=1}^m \left( \partial_{x_i} f(\bar{\vec{x}}) \sigma_{x_i}\right)^2} \] \end{application} \begin{definition}[Gradient vector] The \emph{gradient} of a function \(f(\vec{x}), \vec{x}\in\mathbb{R}^m\) is a column vector\footnote{In matrix notation it is also often defined as row vector to avoid having to do some transpositions in the Jacobian matrix and dot products in directional derivatives} containing the partial derivatives in each direction. \[ \grad f (\vec{x}) = \sum_{i=1}^m \partial_{x_i} f(\vec{x}) \vec{e}_i = \begin{pmatrix} \partial_{x_1} f(\vec{x}) \\ \vdots \\ \partial_{x_m} f(\vec{x}) \\ \end{pmatrix} \] \end{definition} \begin{theorem} The gradient vector always points towards \emph{the direction of steepest ascent}, and thus is always perpendicular to contour lines. \end{theorem} \begin{definition}[Directional derivative] A function \(f(\vec{x})\) has a directional derivative in direction \(\vec{r}\) (with \(|\vec{r}|=1\)) of \[ \frac{\partial f}{\partial\vec{r}} = \nabla_\vec{r} f = \vec{r} \dotp \grad f = \sum_{i=1}^m r_i \partial_{x_i} f \] \end{definition} \begin{definition}[Jacobian Matrix] The \emph{Jacobian} \(\mx{J}_f\) (sometimes written as \(\frac{\partial(f_1,\ldots f_m)}{\partial(x_1,\ldots,x_n)}\)) of a function \(\vec{f}: \mathbb{R}^m \to \mathbb{R}^n\) is a matrix \(\in\mathbb{R}^{m\times n}\) whose entry at the \(i\)-th row and \(j\)-th column is given by \((\mx{J}_f)_{i,j} = \partial_{x_j} f_i\), so \[ \mx{J}_f = \begin{pmatrix} \partial_{x_1} f_1 & \cdots & \partial_{x_m} f_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_n & \cdots & \partial_{x_m} f_n \\ \end{pmatrix} = \begin{pmatrix} (\grad f_1)^t \\ \vdots \\ (\grad f_m)^t \\ \end{pmatrix} \] \end{definition} \begin{remark} In the scalar case (\(n = 1\)) the Jacobian matrix is the transpose of the gradient vector. \end{remark} \begin{definition}[Hessian matrix] Given a function \(f: \mathbb{R}^m \to \mathbb{R}\), the square matrix whose entry at the \(i\)-th row and \(j\)-th column is the second derivative of \(f\) first with respect to \(x_j\) and then to \(x_i\) is known as the \emph{Hessian} matrix. \( \left(\mx{H}_f\right)_{i,j} = \partial_{x_i}\partial_{x_j} f \) or \[ \mx{H}_f = \begin{pmatrix} \partial_{x_1}\partial_{x_1} f & \cdots & \partial_{x_1}\partial_{x_m} f \\ \vdots & \ddots & \vdots \\ \partial_{x_m}\partial_{x_1} f & \cdots & \partial_{x_m}\partial_{x_m} f \\ \end{pmatrix} \] Because (almost always) the order of differentiation does not matter, it is a symmetric matrix. \end{definition} \section{Methods for maximization and minimization problems} \subsection{Analytical methods} \begin{method}[Find stationary points] Given a function \(f: D \subseteq \mathbb{R}^m \to \mathbb{R}\), to find its maxima and minima we shall consider the points \begin{itemize} \item that are on the boundary\footnote{If it belongs to \(f\). \label{ftn:boundary}} of the domain \(\partial D\), \item where the gradient \(\grad f\) is not defined, \item that are stationary, i.e. where \(\grad f = \vec{0}\). \end{itemize} \end{method} \begin{method}[Determine the type of stationary point for 2 dimensions] Given a scalar function of two variables \(f(x,y)\) and a stationary point \(\vec{x}_s\) (where \(\grad f(\vec{x}_s) = \vec{0}\)), we define the \emph{discriminant} \[ \Delta = \partial_x^2 f \partial_y^2 f - \partial_y \partial_x f \] \begin{itemize} \item if \(\Delta > 0\) then \(\vec{x}_s\) is an extrema, if \(\partial_x^2 f(\vec{x}_s) < 0\) it is a maximum, whereas if \(\partial_x^2 f(\vec{x}_s) > 0\) it is a minimum; \item if \(\Delta < 0\) then \(\vec{x}_s\) is a saddle point; \item if \(\Delta = 0\) we need to analyze further. \end{itemize} \end{method} \begin{remark} The previous method is obtained by studying the second directional derivative \(\nabla_\vec{r}\nabla_\vec{r} f\) at the stationary point in direction of a vector \(\vec{r} = \vec{e}_1\cos(\alpha) + \vec{e}_2\sin(\alpha)\). \end{remark} \begin{method}[Determine the type of stationary point in higher dimensions] Given a scalar function of multiple variables \(f(\vec{x})\) and a stationary point \(\vec{x}_s\) (\(\grad f(\vec{x}_s) = \vec{0}\)), we compute the Hessian matrix \(\mx{H}_f(\vec{x}_s)\) and its eigenvalues \(\lambda_1, \ldots, \lambda_m\), then \begin{itemize} \item if all \(\lambda_i > 0\), the point is a minimum; \item if all \(\lambda_i < 0\), the point is a maximum; \item if there are both positive and negative eigenvalues, it is a saddle point. \end{itemize} In the other cases, when there are \(\lambda_i \leq 0\) and/or \(\lambda_i \geq 0\) further analysis is required. \end{method} \begin{remark} Recall that to compute the eigenvalues of a matrix, one must solve the equation \((\mx{H} - \lambda\mx{I})\vec{x} = \vec{0}\). Which can be done by solving the characteristic polynomial \(\det\left(\mx{H} - \lambda\mx{I}\right) = 0\) to obtain \(\dim(\mx{H})\) \(\lambda_i\), which when plugged back in result in a overdetermined system of equations. \end{remark} \begin{method}[Quickly find the eigenvalues of a \(2\times 2\) matrix] This is a nice trick. For a square matrix \(\mx{H}\), let \[ m = \frac{1}{2}\tr \mx{H} = \frac{a + d}{2} , \quad p = \det\mx{H} = ad - bc , \] then \(\lambda_{1,2} = m \pm \sqrt{m^2 - p}\). \end{method} \begin{method}[Search for a constrained extremum in 2 dimensions] Let \(n(x,y) = 0\) be a constraint in the search of the extrema of a function \(f: D \subseteq \mathbb{R}^2 \to \mathbb{R}\). To find the extrema we look for points \begin{itemize} \item on the boundary\footref{ftn:boundary} \(\vec{u} \in \partial D\) where \(n(\vec{u}) = 0\); \item \(\vec{u}\) where the gradient either does not exist or is \(\vec{0}\), and satisfy \(n(\vec{u}) = 0\); \item that solve the system of equations \[ \begin{cases} \partial_x f(\vec{u}) \cdot \partial_y n(\vec{u}) = \partial_y f(\vec{u}) \cdot \partial_x n(\vec{u}) \\ n(\vec{u}) = 0 \end{cases} \] \end{itemize} \end{method} \begin{figure} \centering \includegraphics{img/lagrange-multipliers} \caption{ Intuition for the method of Lagrange multipliers. Extrema of a constrained function are where \(\grad f\) is proportional to \(\grad n\). } \end{figure} \begin{method}[% Search for a constrained extremum in higher dimensions, method of Lagrange multipliers] We wish to find the extrema of \(f: D \subseteq \mathbb{R}^m \to \mathbb{R}\) under \(k < m\) constraints \(n_1 = 0, \cdots, n_k = 0\). To find the extrema we consider the following points: \begin{itemize} \item Points on the boundary\footref{ftn:boundary} \(\vec{u} \in \partial D\) that satisfy \(n_i(\vec{u}) = 0\) for all \(1 \leq i \leq k\), \item Points \(\vec{u} \in D\) where either \begin{itemize} \item any of \(\grad f, \grad n_1, \ldots, \grad n_k\) do not exist, or \item \(\grad n_1, \ldots, \grad n_k\) are linearly \emph{dependent}, \end{itemize} and that satisfy \(0 = n_1(\vec{u}) = \ldots = n_k(\vec{u})\). \item Points that solve the system of \(m+k\) equations \[ \begin{dcases} \grad f(\vec{u}) = \sum_{i = 1}^k \lambda_i \grad n_i(\vec{u}) & (m\text{-dimensional}) \\ n_i(\vec{u}) = 0 & \text{ for } 1 \leq i \leq k \end{dcases} \] The \(\lambda\) values are known as \emph{Lagrange multipliers}. \end{itemize} The calculation of the last point can be written more compactly by defining the \emph{Lagrangian} \[ \mathcal{L}(\vec{u}, \vec{\lambda}) = f(\vec{u}) - \sum_{i = 0}^k \lambda_i n_i(\vec{u}), \] where \(\vec{\lambda} = \lambda_1, \ldots, \lambda_k\) and then solving the \(m+k\) dimensional equation \(\grad \mathcal{L}(\vec{u}, \vec{\lambda}) = \vec{0}\) (this is generally used in numerical computations and not very useful by hand). \end{method} \subsection{Numerical methods} \begin{method}[Newton's method] For a function \(f:\mathbb{R}^m\to\mathbb{R}\) we wish to numerically find its stationary points (where \(\grad f = \vec{0}\)). \begin{enumerate} \item Pick a starting point \(\vec{x}_0\). \item Set the linearisation\footnote{The gradient becomes a hessian matrix.} of \(\grad f\) at \(\vec{x}_k\) to zero and solve for \(\vec{x}_{k+1}\). \begin{gather*} \grad f(\vec{x}_k) + \mx{H}_f (\vec{x}_k) (\vec{x}_{k+1} - \vec{x}_k) = \vec{0} \\ \vec{x}_{k+1} = \vec{x}_k - \mx{H}_f^{-1} (\vec{x}_k) \grad f(\vec{x}_k) \end{gather*} \item Repeat the last step until the magnitude of the error \(|\vec{\epsilon}| = |\mx{H}_f^{-1} (\vec{x}_k) \grad f(\vec{x}_k)|\) is sufficiently small. \end{enumerate} \end{method} \begin{method}[Gradient ascent / descent] Given \(f:\mathbb{R}^m\to\mathbb{R}\) we wish to numerically find the stationary points (where \(\grad f = \vec{0}\)). \begin{enumerate} \item Define an arbitrarily small length \(\eta\) and a starting point \(\vec{x}_0\) \item Compute \(\vec{v} = \pm\grad f(\vec{x}_k)\) (positive for ascent, negative for descent), then \(\vec{x}_{k+1} = \vec{x}_k + \eta\vec{v}\) if the rate of change \(\epsilon\) is acceptable (\(\epsilon = |\grad f(\vec{x}_{k+1})| > 0\)) else recompute \(\vec{v} := \pm \grad f(\vec{x}_{k+1})\). \item Stop when the rate of change \(\epsilon\) stays small enough for many iterations. \end{enumerate} \end{method} \section{Integration of vector valued scalar functions} \begin{figure} \centering \includegraphics{img/double-integral} \caption{ Double integral. \label{fig:double-integral} } \end{figure} \begin{theorem}[Change the order of integration for double integrals] For a double integral over a region \(S\) (see Fig. \ref{fig:double-integral}) we need to compute \[ \iint_S f(x,y) \,ds = \int\limits_{x_1}^{x_2} \int\limits_{y_1(x)}^{y_2(x)} f(x,y) \,dydx . \] If \(y_1(x)\) and \(y_2(x)\) are bijective we can swap the order of integration by finding the inverse functions \(x_1(y)\) and \(x_2(y)\). If they are not bijective (like in Fig. \ref{fig:double-integral}), the region must be split into smaller parts. If the region is a rectangle it is always possible to change the order of integration. \end{theorem} \begin{theorem}[Transformation of coordinates in 2 dimensions] \label{thm:transform-coords} Given two ``nice'' functions \(x(u,v)\) and \(y(u,v)\), that means are a bijection from \(S\) to \(S'\) with continuous partial derivatives and nonzero Jacobian determinant \(|\mx{J}_f| = \partial_u x \partial_v y - \partial_v x \partial_u y\), which transform the coordinate system. Then \[ \iint_S f(x,y) \,ds = \iint_{S'} f(x(u,v), y(u,v)) |\mx{J}_f| \,ds . \] \end{theorem} \begin{theorem}[Transformation of coordinates] The generalization of theorem \ref{thm:transform-coords} is quite simple. For an \(m\)-integral of a function \(f:\mathbb{R}^m\to\mathbb{R}\) over a region \(B\), we let \(\vec{x}(\vec{u})\) be ``nice'' functions that transform the coordinate system. Then as before \[ \int_B f(\vec{x}) \,ds = \int_{B'} f(\vec{x}(\vec{u})) |\mx{J}_f| \,ds . \] \end{theorem} \begin{table} \centering \begin{tabular}{l >{\(}l<{\)} >{\(}l<{\)}} \toprule & \text{Volume } dv & \text{Surface } d\vec{s}\\ \midrule Cartesian & - & dx\,dy \\ Polar & - & rd\,rd\phi \\ Curvilinear & - & |\mx{J}_f|\,du\,dv \\ \midrule Cartesian & dx\,dy\,dz & \uvec{z}\,dx\,dy \\ Cylindrical & r\,dr\,d\phi\,dz & \uvec{z}r\,dr\,d\phi \\ & & \uvec{\phi}\,dr\,dz \\ & & \uvec{r}r\,d\phi\,dz \\ Spherical & r^2\sin\theta\, dr\,d\theta\,d\phi & \uvec{r}r^2\sin\theta\,d\theta\,d\phi \\ Curvilinear & |\mx{J}_f|\,du\,dv\,dw & - \\ \bottomrule \end{tabular} \caption{Differential elements for integration.} \end{table} \begin{application}[Physics] Given the mass \(m\) and density function \(\rho\) of an object, its \emph{center of mass} is calculated with \[ \vec{x}_c = \frac{1}{m}\int_V \vec{x}\rho(\vec{x}) \,dv \stackrel{\rho\text{ const.}}{=} \frac{1}{V} \int_V \vec{x}\,dv . \] The (scalar) \emph{moment of inertia} \(J\) of an object is given by \[ J = \int_V \rho(\vec{r}) r^2 \,dv . \] % and similarly the \emph{area moment of inertia} \(I\) \end{application} \section{Parametric curves, line and surface integrals} \begin{definition}[Parametric curve] A parametric curve is a vector function \(\mathcal{C} : \mathbb{R} \to W \subseteq \mathbb{R}^n, t \mapsto \vec{f}(t)\), that takes a parameter \(t\). \end{definition} \begin{theorem}[Derivative of a curve] The derivative of a curve is \begin{align*} \vec{f}'(t) &= \lim_{h\to 0} \frac{\vec{f}(t + h) - \vec{f}(t)}{h} \\ &= \sum_{i=0}^n \left(\lim_{h\to 0} \frac{f_i(t+h) - f_i(t)}{h}\right) \vec{e}_i \\ &= \sum_{i=0}^n \frac{df_i}{dt}\vec{e}_i = \left(\frac{df_1}{dt}, \ldots, \frac{df_m}{dt}\right)^t . \end{align*} \end{theorem} \begin{theorem}[Multivariable chain rule] Let \(\vec{x}: \mathbb{R} \to \mathbb{R}^m\) and \(f: \mathbb{R}^m \to \mathbb{R}\), so that \(f\circ\vec{x}: \mathbb{R} \to \mathbb{R}\), then the multivariable chain rule states: \[ \frac{d}{dt}f(\vec{x}(t)) = \grad f (\vec{x}(t)) \dotp \vec{x}'(t) = \nabla_{\vec{x}'(t)} f(\vec{x}(t)) . \] \end{theorem} \begin{theorem}[Signed area enclosed by a planar parametric curve] A planar (2D) parametric curve \((x(t), y(t))^t\) with \(t\in[r,s]\) that does not intersect itself encloses a surface with area \[ A = \int_r^s x'(t)y(t) \,dt = \int_r^s x(t)y'(t) \,dt . \] \end{theorem} \begin{definition}[Line integral in a scalar field] Let \(\mathcal{C}:[a,b]\to\mathbb{R}^n, t \mapsto \vec{x}(t)\) be a parametric curve. The \emph{line integral} in a field \(f(\vec{x})\) is the integral of the signed area under the curve traced in \(\mathbb{R}^n\), and is computed with \[ \int_\mathcal{C} f(\vec{x}) \,d\ell = \int_\mathcal{C} f(\vec{x}) \,|d\vec{x}| = \int_a^b f(\vec{x}(t)) |\vec{x}'(t)| \, dt . \] \end{definition} \begin{application}[Length of a parametric curve] By computing the line integral of the function \(1(\vec{x})\) we get the length of the parametric curve \(\mathcal{C}:[a,b]\to\mathbb{R}^n\). \[ \int_\mathcal{C}d\ell = \int_\mathcal{C} |d\vec{x}| = \int_a^b \sqrt{\sum_{i=1}^n x'_i(t)^2} \,dt \] The special case with the scalar function \(f(x)\) results in \(\int_a^b\sqrt{1+f'(x)^2}\,dx\). \end{application} \begin{definition}[Line integral in a vector field] The line integral in a vector field \(\vec{F}(\vec{x})\) is the ``sum'' of the projections of the field's vectors on the tangent of the parametric curve \(\mathcal{C}\). \[ \int_\mathcal{C} \vec{F}(\vec{r})\dotp d\vec{r} = \int_a^b \vec{F}(\vec{r}(t))\dotp \vec{r}'(t) \,dt \] \end{definition} \begin{theorem}[Line integral in the opposite direction] By integrating while moving backwards (\(-t\)) on the parametric curve gives \[ \int_{-\mathcal{C}} \vec{F}(\vec{r})\dotp d\vec{r} = -\int_{\mathcal{C}} \vec{F}(\vec{r})\dotp d\vec{r} . \] \end{theorem} \begin{definition}[Conservative field] A vector field is said to be \emph{conservative} the line integral over a closed path is zero. \[ \oint_\mathcal{C} \vec{F}(\vec{r})\cdot d\vec{r} = 0 \] \end{definition} \begin{theorem} For a twice partially differentiable vector field \(\vec{F}(\vec{x})\) in \(n\) dimensions without ``holes'', i.e. in which each closed curve can be contracted to a point (simply connected open set), the following statements are equivalent: \begin{itemize} \item \(\vec{F}\) is conservative, \item \(\vec{F}\) is path-independent, \item \(\vec{F}\) is a \emph{gradient field}, i.e. there is a function \(\phi\) called \emph{potential} such that \(\vec{F} = \grad \phi\), \item \(\vec{F}\) satisfies the condition \(\partial_{x_j} F_i = \partial_{x_i} F_j\) for all \(i,j \in \{1,2,\ldots,n\}\). In the 2D case \(\partial_x F_y = \partial_y F_x\), and in 3D \[ \begin{cases} \partial_y F_x = \partial_x F_y \\ \partial_z F_y = \partial_y F_z \\ \partial_x F_z = \partial_z F_x \\ \end{cases} \] \end{itemize} \end{theorem} \begin{theorem} In a conservative field \(\vec{F}\) with gradient \(\phi\), using the multivariable the chain rule: \begin{align*} \int_\mathcal{C} \vec{F} \dotp d\vec{r} &= \int_\mathcal{C} \vec{F}(\vec{r}(t)) \dotp \vec{r}'(t) \,dt \\ &= \int_\mathcal{C} \grad \phi(\vec{r}(t)) \cdot \vec{r}'(t) \,dt \\ &= \int_\mathcal{C} \frac{d\phi(\vec{r}(t))}{dt}\,dt = \phi(\vec{r}(b)) - \phi(\vec{r}(a)) . \end{align*} \end{theorem} \begin{definition}[Parametric surface] A parametric surface is a vector function \(\mathcal{S}: W \subseteq \mathbb{R}^2 \to \mathbb{R}^3\). \end{definition} \begin{theorem}[Area of a parametric surface] The area spanned by a parametric surface \(\vec{s}(u,v)\), with continuous partial derivatives and that satisfy \(\partial_u \vec{s} \crossp \partial_v \vec{s} \neq \vec{0}\), is given by \[ A = \int_\mathcal{S} ds = \iint |\partial_u \vec{s} \crossp \partial_v \vec{s}| \,dudv . \] \end{theorem} \begin{definition}[Scalar surface integral] Let \(f: \mathbb{R}^3 \to \mathbb{R}\) be a function on a parametric surface \(\vec{s}: W \subseteq \mathbb{R}^2 \to \mathbb{R}^3\). The surface integral of \(f\) over \(\mathcal{S}\) is \[ \int_\mathcal{S} f \,ds = \iint_W f(\vec{s}(u,v)) \cdot |\partial_u \vec{s} \crossp \partial_v \vec{s}| \,dudv . \] \end{definition} \section{Vector analysis} \begin{definition}[Flux] In a vector field \(\vec{F}: \mathbb{R}^m \to \mathbb{R}^n\) we define the \emph{flux} through a parametric surface \(\mathcal{S}\) as \[ \Phi = \int_\mathcal{S} \vec{F} \dotp d\vec{s} = \int_\mathcal{S} \vec{F} \dotp \uvec{n} \,ds . \] If \(\mathcal{S}\) is a closed surface we write \( \mathring{\Phi} = \oint_\mathcal{S} \vec{F} \dotp d\vec{s} \). \end{definition} If we now take the normalized flux on the surface of an arbitrarily small volume \(V\) (limit as \(V\to 0\)) we get the \emph{divergence} \[ \div \vec{F} = \lim_{V\to 0} \frac{1}{V} \oint_{\partial V} \vec{F}\dotp d\vec{s} . \] \begin{theorem}[Formula for divergence] Let \(\vec{F}: \mathbb{R}^m \to \mathbb{R}^m\) be a vector field. The divergence of \(\vec{F} = (F_{x_1},\ldots, F_{x_m})^t\) is \[ \div\vec{F} = \sum_{i = 1}^m \partial_{x_i} F_{x_i} , \] as suggested by the (ab)use of the dot product notation. \end{theorem} \begin{theorem}[Divergence theorem, Gauss's theorem] Because the flux on the boundary \(\partial V\) of a volume \(V\) contains information of the field inside of \(V\), it is possible relate the two with \[ \int_V \div \vec{F} \,dv = \oint_{\partial V} \vec{F} \dotp d\vec{s} . \] \end{theorem} \begin{definition}[Circulation, Vorticity] The result of a closed line integral can be interpreted as a macroscopic measure how much the field rotates around a given point, and is thus sometimes called \emph{circulation} or \emph{vorticity}. \end{definition} As before, if we now make the area \(A\) enclosed by the parametric curve for the circulation arbitrarily small, normalize it, and use Gauss's theorem we get a local measure called \emph{curl}. \[ \curl \vec{F} = \lim_{A\to 0} \frac{\uvec{n}}{A} \oint_{\partial A} \vec{F} \dotp d\vec{s} \] Notice that the curl is a vector, normal to the enclosed surface \(A\). \begin{theorem}[Formula for curl] Let \(\vec{F}\) be a vector field. In 2 dimensions \[ \curl \vec{F} = \left(\partial_x F_y - \partial_y F_x\right)\uvec{z}. \] And in 3D \[ \curl \vec{F} = \begin{pmatrix} \partial_y F_z - \partial_z F_y \\ \partial_z F_x - \partial_x F_z \\ \partial_x F_y - \partial_y F_x \end{pmatrix} = \begin{vmatrix} \uvec{x} & \uvec{y} & \uvec{z} \\ \partial_x & \partial_y & \partial_z \\ F_x & F_y & F_z \end{vmatrix} . \] \end{theorem} \begin{theorem}[Stokes' theorem] \[ \int_\mathcal{S} \curl \vec{F} \dotp d\vec{s} = \oint_{\partial\mathcal{S}} \vec{F} \dotp d\vec{r} \] \end{theorem} \begin{theorem}[Green's theorem] The special case of Stokes' theorem in 2D is knowns as Green's theorem. \[ \int_\mathcal{S} \partial_x F_y - \partial_y F_x \,ds = \oint_{\partial\mathcal{S}} \vec{F} \dotp d\vec{r} \] \end{theorem} \begin{definition}[Laplacian operator] A second vector derivative is so important that it has a special name. For a scalar function \(f: \mathbb{R}^m \to \mathbb{R}\) the divergence of the gradient \[ \laplacian = \div (\grad f) = \sum_{i=1}^m \partial_{x_i}^2 f_{x_i} \] is called the \emph{Laplacian operator}. \end{definition} \begin{definition}[Vector Laplacian] The Laplacian operator can be extended on a vector field \(\vec{F}\) to the \emph{Laplacian vector} by applying the Laplacian to each component: \[ \vlaplacian \vec{F} = (\laplacian F_x)\uvec{x} + (\laplacian F_y)\uvec{y} + (\laplacian F_z)\uvec{z} . \] The vector Laplacian can also be defined as \[ \vlaplacian \vec{F} = \grad (\div \vec{F}) - \curl (\curl \vec{F}). \] \end{definition} \begin{theorem}[Product rules and second derivatives] Let \(f,g\) be sufficiently differentiable scalar functions \(D \subseteq\mathbb{R}^m \to \mathbb{R}\) and \(\vec{A}, \vec{B}\) be sufficiently differentiable vector fields in \(\mathbb{R}^m\) (with \(m = 2\) or 3 for equations with the curl). \begin{itemize} \item Rules with the gradient \begin{align*} \grad (\div \vec{A}) &= \curl \curl \vec{A} + \vlaplacian \vec{A} \\ \grad (f\cdot g) &= (\grad f)\cdot g + f\cdot \grad g \\ \grad (\vec{A} \dotp \vec{B}) &= (\vec{A} \dotp \grad) \vec{B} + (\vec{B} \dotp \grad) \vec{A} \\ & + \vec{A} \crossp (\curl \vec{B}) + \vec{B} \crossp (\curl \vec{A}) \end{align*} \item Rules with the divergence \begin{align*} \div (\grad f) &= \laplacian f \\ \div (\curl \vec{A}) &= 0 \\ \div (f\cdot \vec{A}) &= (\grad f) \dotp \vec{A} + f\cdot (\div \vec{A}) \\ \div (\vec{A}\crossp\vec{B}) &= (\curl \vec{A})\dotp \vec{B} - \vec{A} \cdot (\curl\vec{B}) \end{align*} \item Rules with the curl \begin{align*} \curl (\grad f) &= \vec{0} \\ \curl (\curl \vec{A}) &= \grad (\div \vec{A}) - \vlaplacian \vec{A} \\ \curl (\vlaplacian \vec{A}) &= \vlaplacian (\curl \vec{A}) \\ \curl (f\cdot \vec{A}) &= (\grad f)\crossp \vec{A} + f\cdot \curl \vec{A} \\ \curl (\vec{A}\crossp\vec{B}) &= (\vec{B} \dotp \grad) \vec{A} - (\vec{A} \dotp \grad) \vec{B} \\ &+ \vec{A} \dotp (\div \vec{B}) - \vec{B} \dotp (\div \vec{A}) \end{align*} \end{itemize} \end{theorem} \section*{License} \doclicenseText \begin{center} \doclicenseImage \end{center} \end{document} % vim:ts=2 sw=2 et spell: