% !TeX program = xelatex % !TeX encoding = utf8 % !TeX root = FuVar.tex %% TODO: publish to CTAN \documentclass[twocolumn, margin=normal]{tex/hsrzf} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Packages %% TODO: publish to CTAN \usepackage{tex/hsrstud} %% Language configuration \usepackage{polyglossia} \setdefaultlanguage{english} %% License configuration \usepackage[ type={CC}, modifier={by-nc-sa}, version={4.0}, lang={english}, ]{doclicense} %% Math \usepackage{amsmath} \usepackage{amsthm} % Layout \usepackage{enumitem} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Metadata \course{Elektrotechnik} \module{FuVar} \semester{Spring Semseter 2021} \authoremail{naoki.pross@ost.ch} \author{\textsl{Naoki Pross} -- \texttt{\theauthoremail}} \title{\texttt{\themodule} Notes} \date{\thesemester} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Macros and settings %% number sets \newcommand\Nset{\mathbb{N}} \newcommand\Zset{\mathbb{Z}} \newcommand\Qset{\mathbb{Q}} \newcommand\Rset{\mathbb{R}} \newcommand\Cset{\mathbb{C}} \newcommand\T{\mathrm{T}} %% Theorems \newtheoremstyle{fuvarzf} % name of the style to be used {\topsep} {\topsep} {} {0pt} {\bfseries} {.} { } { } \theoremstyle{fuvarzf} \newtheorem{theorem}{Theorem} \newtheorem{definition}{Definition} \newtheorem{lemma}{Lemma} \setlist[description]{ format = { \normalfont\itshape } } %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Document \begin{document} \maketitle \tableofcontents \section{Fields and vector spaces} \begin{definition}[Field] A field is a set \(F\) with two binary operators \(+\) and \(\cdot\) that map \(F\times F \to F\) and follow the \emph{field axioms} listed below. We let \(a, b \in F\) and \(\star\) stands for \(\cdot\) or \(+\). \begin{description} \item[Associativity:] \((a \star b) \star c = a \star (b \star c)\) \item[Commutativity:] \(a \star b = b \star a\) \item[Identities:] \(0 + a = a\) and \(1\cdot a = a\) \item[Inverses:] \(a + (-a) = 0\) and \(b \cdot b^{-1} = 1\) iff \(b \neq 0\) \item[Distributivity:] \(a \cdot (b + c) = a\cdot b + a \cdot c\) \end{description} \end{definition} \begin{theorem} \(\Rset\) is a field. \end{theorem} \begin{definition}[Vector space] A vector space \(U\) over a field \(F\) is a set of objects called \emph{vectors} equipped with two operations: \emph{addition} \(+: U \times U \to U\) and \emph{scalar multiplication} \(\cdot: F\times U \to U\), that respect the following axioms. Let \(\vec{u}, \vec{v}, \vec{w} \in U\) and \(a, b \in F\). \begin{description} \item[Additive associativity:] \((\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})\) \item[Additive commutativity:] \(\vec{u} + \vec{v} = \vec{v} + \vec{u}\) \item[Identities:] There is an element \(\vec{0} \in U : \vec{u} + \vec{0} = \vec{u}\) and \(1 \in F : 1 \cdot \vec{u} = \vec{u}\) \item[Additive inverse:] \(\vec{u} + (\vec{-u}) = 0\) \item[Compatibility of multiplication] \(a\cdot (b \cdot \vec{u}) = (a\cdot b) \cdot \vec{u}\) \item[Distributivity:] \((a + b) \cdot \vec{u} = a\cdot\vec{u} + b\cdot\vec{u}\) and conversely \(a \cdot (\vec{u} + \vec{v}) = a\cdot\vec{u} + a\cdot\vec{v}\) \end{description} And of course elements in \(F\) follow the field axioms. \end{definition} \begin{theorem} \(\Rset^n = \Rset\times\cdots\times\Rset\) is a vector space. \end{theorem} \begin{definition}[Row and column vectors] Although there is virtually no difference between the two, we need two type of \(n\)-tuples that satisfy the vector space axioms. \emph{Row} vectors are written horizontally and \emph{column} vectors vertically. \end{definition} \begin{definition}[Transposition] Let \(\vec{u} \in \Rset^n\) be a row vector. The \emph{transpose} of \(\vec{u}\) denoted with \(\vec{u}^\T\) is column vector with the same components. Conversely if \(\vec{v}\) is a column vector then \(\vec{v}^\T\) is a row vector. \end{definition} \section{Scalar fields} \begin{definition}[Scalar field] Confusingly we call a function \(f: \Rset^n \to \Rset\) a \emph{scalar field}, but this is unrelated to the previously defined field. \end{definition} \begin{definition}[Partial derivative of a scalar field] Let \(f: \Rset^n \to \Rset\), the \emph{partial} derivative of \(f\) with respect to \(x_k\), (\(0 < k \leq n\)), is defined as \[ \frac{\partial f}{\partial x_k} := \lim_{h \to 0} \frac{f(x_1, \dots, x_k + h, \dots, x_n) - f(x_1, \dots, x_k, \dots, x_n)}{h} = \partial_{x_k} f(x, y) \] That is, we keep all variables of \(f\) fixed, except for \(x_k\). \end{definition} \begin{definition}[Tangent plane] For a scalar field \(f(x,y)\) we define the \emph{tangent plane} \(p(x,y)\) at coordinates \((x_0, y_0)\) to be: \[ p(x, y) = f(x_0, y_0) + \partial_x f(x_0, y_0) (x - x_0) + \partial_y f(x_0, y_0) (y - y_0) \] \end{definition} The above can be used to calculate the one dimensional derivative of an implicit curve. \begin{lemma}[Implicit derivative] The slope \(m\) of an implicit curve \(f(x,y)\) at the point \((x_0, y_0)\) is given by \[ m = \partial_x f(x_0, y_0) / \partial_y f(x_0, y_0) \] of course only if \(\partial_y f(x_0, y_0) \neq 0\). \end{lemma} \begin{definition}[Total derivative] \[ \dd{f} \] \end{definition} \section*{License} \doclicenseText \begin{center} \doclicenseImage \end{center} \end{document}