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1 Preface
These are just my personal notes of the FuVar
course, and definitively not a rigorously constructed
mathematical text. The good looking LATEX type-
setting may trick you into thinking it is rigorous,
but really, it is not.

2 Derivatives of vector valued
functions

Definition 1 (Partial derivative). A vector values
function f : Rm → R, with v ∈ Rm, has a partial
derivative with respect to vi defined as

∂vi
f(v) = fvi

(v) = lim
h→0

f(v + hej) − f(v)
h

Theorem 1. (Schwarz’s theorem, symmetry of par-
tial derivatives) Under some generally satisfied con-
ditions (continuity of n-th order partial derivatives)
Schwarz’s theorem states that it is possible to swap
the order of differentiation.

∂x∂yf(x, y) = ∂y∂xf(x, y)

Definition 2 (Linearization). A function f : Rm →
R has a linearization g at x0 given by

g(x) = f(x0) +
m∑

i=1
∂xi

f(x0)(xi − xi,0),

if all partial derviatives are defined at x0.

Theorem 2 (Propagation of uncertanty). Given a
measurement of m values in a vector x ∈ Rm with
values given in the form xi = x̄i ± σxi

, a linear
approximation the error of a dependent variable y
is computed with

y = ȳ ± σy ≈ f(x̄) ±

√√√√ m∑
i=1

(∂xi
f(x̄)σxi

)2

Definition 3 (Gradient vector). The gradient of a
function f(x), x ∈ Rm is a column vector1 contain-
ing the derivatives in each direction.

∇f(x) =
m∑

i=1
∂xi

f(x)ei =

∂x1f(x)
...

∂xm
f(x)


Definition 4 (Directional derivative). A function
f(x) has a directional derivative in direction r (with
|r| = 1) given by

∂f

∂r = ∇rf = r · ∇f

Theorem 3. The gradient vector always points to-
wards the direction of steepest ascent.

Definition 5 (Jacobian Matrix). The Jacobian Jf

(sometimes written as ∂(f1,...fm)
∂(x1,...,xn) ) of a function f :

Rn → Rm is a matrix ∈ Rn×m whose entry at the i-
th row and j-th column is given by (Jf )i,j = ∂xj

fi,
so

Jf =

 ∂x1f1 · · · ∂xnf1
... . . . ...

∂x1fm · · · ∂xn
fm

 =

 (∇f1)t

...
(∇fm)t


Remark 1. In the scalar case (m = 1) the Jacobian
matrix is the transpose of the gradient vector.

Definition 6 (Hessian matrix). Given a function
f : Rm → R, the square matrix whose entry at the
i-th row and j-th column is the second derivative of
f first with respect to xj and then to xi is know as
the Hessian matrix. (Hf )i,j = ∂xi

∂xj
f or

Hf =

∂x1∂x1f · · · ∂x1∂xmf
... . . . ...

∂xm
∂x1f · · · ∂xm

∂xm
f


Because (almost always) the order of differentiation
does not matter, it is a symmetric matrix.

1In matrix notation it is also often defined as row vector
to avoid having to do some transpositions in the Jacobian
matrix and dot products in directional derivatives
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3 Methods for maximization
and minimization problems

Method 1 (Find stationary points). Given a func-
tion f : D ⊆ Rm → R, to find its maxima and
minima we shall consider the points

• that are on the boundary of the domain ∂D,

• where the gradient ∇f is not defined,

• that are stationary, i.e. where ∇f = 0.
Method 2 (Determine the type of stationary point
for 2 dimensions). Given a scalar function of two
variables f(x, y) and a stationary point xs (where
∇f(xs) = 0), we define the discriminant

∆ = ∂2
xf∂2

yf − ∂y∂xf

• if ∆ > 0 then xs is an extrema, if ∂2
xf(xs) < 0

it is a maximum, whereas if ∂2
xf(xs) > 0 it is

a minimum;

• if ∆ < 0 then xs is a saddle point;

• if ∆ = 0 we need to analyze further.
Remark 2. The previous method is obtained by
studying the second directional derivative ∇r∇rf
at the stationary point in direction of a vector r =
e1 cos(α) + e2 sin(α)

Method 3 (Determine the type of stationary point
in higher dimensions). Given a scalar function of
two variables f(x, y) and a stationary point xs

(where ∇f(xs) = 0), we compute the Hessian
matrix Hf (xs). Then we compute its eigenvalues
λ1, . . . , λm and

• if all λi > 0, the point is a minimum;

• if all λi < 0, the point is a maximum;

• if there are both positive and negative eigen-
values, it is a saddle point.

In the other cases, when there are λi ≤ 0 and/or
λi ≥ 0 further analysis is required.
Remark 3. Recall that to compute the eigenval-
ues of a matrix, one must solve the equation (H −
λI)x = 0. Which can be done by solving the char-
acteristic polynomial det (H − λI) = 0 to obtain
dim(H) λi, which when plugged back in result in a
overdetermined system of equations.
Method 4 (Quickly find the eigenvalues of a 2 × 2
matrix). This is a nice trick. For a square matrix
H, let

m = 1
2

tr H = a + d

2
, p = det H = ad − bc,

then λ1,2 = m ±
√

m2 − p.

Figure 1: Intuition for the method of Lagrange
multipliers. Extrema of a constrained function are
where ∇f is proportional to ∇n.

Method 5 (Search for a constrained extremum in 2
dimensions). Let n(x, y) = 0 be a constraint in the
search of the extrema of a function f : D ⊆ R2 → R.
To find the extrema we look for points

• on the boundary u ∈ ∂D where n(u) = 0;

• u where the gradient either does not exist or is
0, and satisfy n(u) = 0;

• that solve the system of equations{
∂xf(u) · ∂yn(u) = ∂yf(u) · ∂xn(u)
n(u) = 0

Method 6 (Search for a constrained extremum in
higher dimensions, method of Lagrange multipli-
ers). We wish to find the extrema of f : D ⊆ Rm →
R under k < m constraints n1 = 0, · · · , nk = 0. To
find the extrema we consider the following points:

• Points on the boundary u ∈ ∂D that satisfy
ni(u) = 0 for all 1 ≤ i ≤ k,

• Points u ∈ D where either

– any of ∇f, ∇n1, . . . , ∇nk do not exist, or
– ∇n1, . . . , ∇nk are linearly dependent,

and that satisfy 0 = n1(u) = . . . = nk(u).

• Points that solve the system of m+k equations
∇f(u) =

k∑
i=1

λi∇ni(u) (m-dimensional)

ni(u) = 0 for 1 ≤ i ≤ k

The λ values are known as Lagrange multipli-
ers. The same calculation can be written more
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Figure 2: Double integral.

compactly by defining the m + k dimensional
Lagrangian

L(u, λ) = f(u) −
k∑

i=0
λini(u)

where λ = λ1, . . . , λk and then solving
∇L(u, λ) = 0. This is generally used in nu-
merical computations and not very useful by
hand.

4 Integration of vector values
scalar functions

Theorem 4 (Change the order of integration for
double integrals). For a double integral over a re-
gion S (see Fig. 2) we need to compute

�
S

f(x, y) ds =
x2�

x1

y2(x)�

y1(x)

f(x, y) dydx.

If y1(x) and y2(x) are bijective we can swap the
order of integration by finding the inverse functions
x1(y) and x2(y). If they are not bijective (like in
Fig. 2), the region must be split into smaller parts.
If the region is a rectangle it is always possible to
change the order of integration.

Theorem 5 (Transformation of coordinates in 2 di-
mensions). Given two “nice” functions x(u, v) and
y(u, v), that means are a bijection from S to S′

with continuous partial derivatives and nonzero Ja-
cobian determinant |Jf | = ∂ux∂vy − ∂vx∂uy, which
transform the coordinate system. Then
�

S

f(x, y) ds =
�

S′
f(x(u, v), y(u, v))|Jf | ds

Theorem 6 (Transformation of coordinates). The
generalization of theorem 5 is quite simple. For an
n-integral of a function f : Rm → R over a region

Volume dv Surface ds
Cartesian − dx dy
Polar − rd rdϕ
Curvilinear − |Jf | du dv

Cartesian dx dy dz ẑ dx dy
Cylindrical r dr dϕ dz ẑr dr dϕ

ϕ̂ dr dz
r̂r dϕ dz

Spherical r2 sin θ dr dθ dϕ r̂r2 sin θ dθ dϕ
Curvilinear |Jf | du dv dw −

Table 1: Differential elements for integration.

B, we let x(u) be “nice” functions that transform
the coordinate system. Then as before

�
B

f(x) ds =
�

B′
f(x(u))|Jf | ds

5 Derivatives of curves

License
This work is licensed under a “CC BY-NC-SA 4.0”
license.
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