FuVar Notes

Naoki Pross – naoki.pross@ost.ch

Spring Semseter 2021

1 Preface

These are just my personal notes of the FuVar course, and definitively not a rigorously constructed mathematical text. The good looking LAT_{EX} typesetting may trick you into thinking it is rigorous, but really, it is not.

2 Derivatives of vector valued functions

Definition 1 (Partial derivative)**.** A vector values function $f: \mathbb{R}^m \to \mathbb{R}$, with $\mathbf{v} \in \mathbb{R}^m$, has a partial derivative with respect to v_i defined as

$$
\partial_{v_i} f(\mathbf{v}) = f_{v_i}(\mathbf{v}) = \lim_{h \to 0} \frac{f(\mathbf{v} + h\mathbf{e}_j) - f(\mathbf{v})}{h}
$$

Theorem 1. (Schwarz's theorem, symmetry of partial derivatives) Under some generally satisfied conditions (continuity of *n*-th order partial derivatives) Schwarz's theorem states that it is possible to swap the order of differentiation.

$$
\partial_x \partial_y f(x, y) = \partial_y \partial_x f(x, y)
$$

Definition 2 (Linearization)**.** A function $f : \mathbb{R}^m \to$ R has a linearization *g* at \mathbf{x}_0 given by

$$
g(\mathbf{x}) = f(\mathbf{x}_0) + \sum_{i=1}^m \partial_{x_i} f(\mathbf{x}_0)(x_i - x_{i,0}),
$$

if all partial derviatives are defined at \mathbf{x}_0 .

Theorem 2 (Propagation of uncertanty)**.** Given a measurement of m values in a vector $\mathbf{x} \in \mathbb{R}^m$ with values given in the form $x_i = \bar{x}_i \pm \sigma_{x_i}$, a linear approximation the error of a dependent variable *y* is computed with

$$
y = \bar{y} \pm \sigma_y \approx f(\bar{\mathbf{x}}) \pm \sqrt{\sum_{i=1}^{m} (\partial_{x_i} f(\bar{\mathbf{x}}) \sigma_{x_i})^2}
$$

Definition 3 (Gradient vector)**.** The *gradient* of a function $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^m$ is a column vector¹ containing the derivatives in each direction.

$$
\nabla f(\mathbf{x}) = \sum_{i=1}^{m} \partial_{x_i} f(\mathbf{x}) \mathbf{e}_i = \begin{pmatrix} \partial_{x_1} f(\mathbf{x}) \\ \vdots \\ \partial_{x_m} f(\mathbf{x}) \end{pmatrix}
$$

Definition 4 (Directional derivative)**.** A function $f(\mathbf{x})$ has a directional derivative in direction **r** (with $|\mathbf{r}| = 1$) given by

$$
\frac{\partial f}{\partial \mathbf{r}} = \nabla_{\mathbf{r}} f = \mathbf{r} \cdot \nabla f
$$

Theorem 3. The gradient vector always points towards *the direction of steepest ascent*.

Definition 5 (Jacobian Matrix)**.** The *Jacobian* **J***^f* (sometimes written as $\frac{\partial (f_1,...,f_m)}{\partial (x_1,...,x_n)}$) of a function **f** : $\mathbb{R}^n \to \mathbb{R}^m$ is a matrix $\in \mathbb{R}^{n \times m}$ whose entry at the *i*th row and *j*-th column is given by $(\mathbf{J}_f)_{i,j} = \partial_{x_j} f_i$, so

$$
\mathbf{J}_f = \begin{pmatrix} \partial_{x_1} f_1 & \cdots & \partial_{x_n} f_1 \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m & \cdots & \partial_{x_n} f_m \end{pmatrix} = \begin{pmatrix} (\nabla f_1)^t \\ \vdots \\ (\nabla f_m)^t \end{pmatrix}
$$

Remark 1. In the scalar case $(m = 1)$ the Jacobian matrix is the transpose of the gradient vector.

Definition 6 (Hessian matrix)**.** Given a function $f: \mathbb{R}^m \to \mathbb{R}$, the square matrix whose entry at the *i*-th row and *j*-th column is the second derivative of f first with respect to x_j and then to x_i is know as the *Hessian* matrix. $(\mathbf{H}_f)_{i,j} = \partial_{x_i} \partial_{x_j} f$ or

$$
\mathbf{H}_f = \begin{pmatrix} \partial_{x_1} \partial_{x_1} f & \cdots & \partial_{x_1} \partial_{x_m} f \\ \vdots & & \vdots \\ \partial_{x_m} \partial_{x_1} f & \cdots & \partial_{x_m} \partial_{x_m} f \end{pmatrix}
$$

Because (almost always) the order of differentiation does not matter, it is a symmetric matrix.

¹ In matrix notation it is also often defined as row vector to avoid having to do some transpositions in the Jacobian matrix and dot products in directional derivatives

3 Methods for maximization and minimization problems

Method 1 (Find stationary points)**.** Given a function $f: D \subseteq \mathbb{R}^m \to \mathbb{R}$, to find its maxima and minima we shall consider the points

- that are on the boundary of the domain *∂D*,
- where the gradient ∇f is not defined,
- that are stationary, i.e. where $\nabla f = 0$.

Method 2 (Determine the type of stationary point for 2 dimensions)**.** Given a scalar function of two variables $f(x, y)$ and a stationary point \mathbf{x}_s (where $\nabla f(\mathbf{x}_s) = \mathbf{0}$, we define the *discriminant*

$$
\Delta = \partial_x^2 f \partial_y^2 f - \partial_y \partial_x f
$$

- if $\Delta > 0$ then **x**_{*s*} is an extrema, if $\partial_x^2 f(\mathbf{x}_s) < 0$ it is a maximum, whereas if $\partial_x^2 f(\mathbf{x}_s) > 0$ it is a minimum;
- if $\Delta < 0$ then \mathbf{x}_s is a saddle point;
- if $\Delta = 0$ we need to analyze further.

Remark 2. The previous method is obtained by studying the second directional derivative $\nabla_{\mathbf{r}} \nabla_{\mathbf{r}} f$ at the stationary point in direction of a vector $\mathbf{r} =$ $\mathbf{e}_1 \cos(\alpha) + \mathbf{e}_2 \sin(\alpha)$

Method 3 (Determine the type of stationary point in higher dimensions)**.** Given a scalar function of two variables $f(x, y)$ and a stationary point \mathbf{x}_s (where $\nabla f(\mathbf{x}_s) = \mathbf{0}$), we compute the Hessian matrix $\mathbf{H}_f(\mathbf{x}_s)$. Then we compute its eigenvalues $\lambda_1, \ldots, \lambda_m$ and

- if all $\lambda_i > 0$, the point is a minimum;
- if all $\lambda_i < 0$, the point is a maximum;
- if there are both positive and negative eigenvalues, it is a saddle point.

In the other cases, when there are $\lambda_i \leq 0$ and/or $\lambda_i \geq 0$ further analysis is required.

Remark 3. Recall that to compute the eigenvalues of a matrix, one must solve the equation (**H** *−* λ **I**)**x** = **0**. Which can be done by solving the characteristic polynomial det $(\mathbf{H} - \lambda \mathbf{I}) = 0$ to obtain $\dim(\mathbf{H})$ λ_i , which when plugged back in result in a overdetermined system of equations.

Method 4 (Quickly find the eigenvalues of a 2×2) matrix)**.** This is a nice trick. For a square matrix **H**, let

$$
m = \frac{1}{2} \operatorname{tr} \mathbf{H} = \frac{a+d}{2}, \quad p = \det \mathbf{H} = ad - bc,
$$

then $\lambda_{1,2} = m \pm \sqrt{m^2 - p}.$

Figure 1: Intuition for the method of Lagrange multipliers. Extrema of a constrained function are where ∇f is proportional to ∇n .

Method 5 (Search for a constrained extremum in 2 dimensions). Let $n(x, y) = 0$ be a constraint in the search of the extrema of a function $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$. To find the extrema we look for points

- on the boundary $\mathbf{u} \in \partial D$ where $n(\mathbf{u}) = 0$;
- **u** where the gradient either does not exist or is **0**, and satisfy $n(\mathbf{u}) = 0$;
- that solve the system of equations

$$
\begin{cases} \partial_x f(\mathbf{u}) \cdot \partial_y n(\mathbf{u}) = \partial_y f(\mathbf{u}) \cdot \partial_x n(\mathbf{u}) \\ n(\mathbf{u}) = 0 \end{cases}
$$

Method 6 (Search for a constrained extremum in higher dimensions, method of Lagrange multipliers). We wish to find the extrema of $f: D \subseteq \mathbb{R}^m \to$ R under $k < m$ constraints $n_1 = 0, \dots, n_k = 0$. To find the extrema we consider the following points:

- Points on the boundary $\mathbf{u} \in \partial D$ that satisfy $n_i(\mathbf{u}) = 0$ for all $1 \leq i \leq k$,
- Points $\mathbf{u} \in D$ where either
	- **–** any of *∇f, ∇n*1*, . . . , ∇n^k* do not exist, or **–** *∇n*1*, . . . , ∇n^k* are linearly *dependent*,

and that satisfy $0 = n_1(\mathbf{u}) = \ldots = n_k(\mathbf{u})$.

• Points that solve the system of $m+k$ equations

$$
\begin{cases} \nabla f(\mathbf{u}) = \sum_{i=1}^{k} \lambda_i \nabla n_i(\mathbf{u}) & (m\text{-dimensional})\\ n_i(\mathbf{u}) = 0 & \text{for } 1 \le i \le k \end{cases}
$$

The *λ* values are known as *Lagrange multipliers*. The same calculation can be written more

Figure 2: Double integral.

compactly by defining the $m + k$ dimensional *Lagrangian*

$$
\mathcal{L}(\mathbf{u}, \boldsymbol{\lambda}) = f(\mathbf{u}) - \sum_{i=0}^{k} \lambda_i n_i(\mathbf{u})
$$

where $\lambda = \lambda_1, \ldots, \lambda_k$ and then solving $\nabla \mathcal{L}(\mathbf{u}, \lambda) = \mathbf{0}$. This is generally used in numerical computations and not very useful by hand.

4 Integration of vector values scalar functions

Theorem 4 (Change the order of integration for double integrals)**.** For a double integral over a region S (see Fig. 2) we need to compute

$$
\iint_{S} f(x, y) ds = \int_{x_1}^{x_2} \int_{y_1(x)}^{y_2(x)} f(x, y) dy dx.
$$

If $y_1(x)$ and $y_2(x)$ are bijective we can swap the order of integration by finding the inverse functions $x_1(y)$ and $x_2(y)$. If they are not bijective (like in Fig. 2), the region must be split into smaller parts. If the region is a rectangle it is always possible to change the order of integration.

The[or](#page-2-0)em 5 (Transformation of coordinates in 2 dimensions). Given two "nice" functions $x(u, v)$ and $y(u, v)$, that means are a bijection from *S* to *S'* with continuous partial derivatives and nonzero Jacobian determinant $|\mathbf{J}_f| = \partial_u x \partial_v y - \partial_v x \partial_u y$, which transform the coordinate system. Then

$$
\iint_{S} f(x, y) ds = \iint_{S'} f(x(u, v), y(u, v)) |\mathbf{J}_{f}| ds
$$

Theorem 6 (Transformation of coordinates)**.** The generalization of theorem 5 is quite simple. For an *n*-integral of a function $f : \mathbb{R}^m \to \mathbb{R}$ over a region

	Volume dv	Surface ds
Cartesian		dx dy
Polar		$r d r d\phi$
Curvilinear		$ \mathbf{J}_f du dv$
Cartesian	dx dy dz	$\hat{\mathbf{z}}$ dx dy
Cylindrical	$r dr d\phi dz$	$\hat{\mathbf{z}}$ r dr d ϕ
		$\hat{\phi}$ dr dz
		$\hat{\mathbf{r}}$ r d ϕ dz
Spherical	$r^2 \sin \theta \, dr \, d\theta \, d\phi$	$\mathbf{\hat{r}}r^2\sin\theta d\theta d\phi$
Curvilinear	$ \mathbf{J}_f du dv dw$	

Table 1: Differential elements for integration.

B, we let $\mathbf{x}(\mathbf{u})$ be "nice" functions that transform the coordinate system. Then as before

$$
\int_B f(\mathbf{x}) ds = \int_{B'} f(\mathbf{x(u)}) |\mathbf{J}_f| ds
$$

5 Derivatives of curves

License

This work is licensed under a "CC BY-NC-SA 4.0" license.

