Notes of "Funktionen mehrerer Variablen"

Naoki Pross - naoki. pross@ost.ch

Spring Semseter 2021

1 Preface

These are just my personal notes of the FuVar course, and definitively not a rigorously constructed mathematical text. The good looking $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ typesetting may trick you into thinking it is rigorous, but really, it is not.

2 Derivatives of vector valued scalar functions

Definition 1 (Partial derivative). A vector valued function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, with $\mathbf{v} \in \mathbb{R}^{m}$, has a partial derivative with respect to v_{i} defined as

$$
\partial_{v_{i}} f(\mathbf{v})=\frac{\partial f}{\partial v_{i}}=\lim _{h \rightarrow 0} \frac{f\left(\mathbf{v}+h \mathbf{e}_{i}\right)-f(\mathbf{v})}{h}
$$

Theorem 1. (Schwarz's theorem, symmetry of partial derivatives) Under some generally satisfied conditions (continuity of n-th order partial derivatives) Schwarz's theorem states that it is possible to swap the order of differentiation.

$$
\partial_{x} \partial_{y} f(x, y)=\partial_{y} \partial_{x} f(x, y)
$$

Application 1 (Find the slope of an implicit curve). Let $f(x, y)=0$ be an implicit curve. Its slope at any point where $\partial_{y} f \neq 0$ is $m=-\partial_{x} f / \partial_{y} f$
Definition 2 (Total differential). The total differential $d f$ of $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is

$$
d f=\sum_{i=1}^{m} \partial_{x_{i}} f \cdot d x
$$

That reads, the total change is the sum of the change in each direction. This implies

$$
\frac{d f}{d x_{k}}=\frac{\partial f}{\partial x_{k}}+\sum_{i \in\{1 \leq i \leq m: i \neq k\}} \frac{\partial f}{\partial x_{i}} \cdot \frac{d x_{i}}{d x_{k}}
$$

i.e. the change in direction x_{k} is how f changes in x_{k} (ignoring other directions) plus, how f changes with respect to each other variable x_{i} times how they $\left(x_{i}\right)$ change with respect to x_{k}.
Application 2 (Linearization). A function $f: \mathbb{R}^{m} \rightarrow$ \mathbb{R} has a linearization g at \mathbf{x}_{0} given by

$$
g(\mathbf{x})=f\left(\mathbf{x}_{0}\right)+\sum_{i=1}^{m} \partial_{x_{i}} f\left(\mathbf{x}_{0}\right)\left(x_{i}-x_{i, 0}\right)
$$

if all partial derivatives are defined at \mathbf{x}_{0}. With the gradient (defined below) $g(\mathbf{x})=f\left(\mathbf{x}_{0}\right)+\nabla f\left(\mathbf{x}_{0}\right) \cdot(\mathbf{x}-$ x_{0}).

Application 3 (Propagation of uncertanty). Given a measurement of m values in a vector $\mathbf{x} \in \mathbb{R}^{m}$ with values given in the form $x_{i}=\bar{x}_{i} \pm \sigma_{x_{i}}$, a linear approximation of the error of a dependent variable $y=f(\mathbf{x})$ is computed with

$$
y=\bar{y} \pm \sigma_{y} \approx f(\overline{\mathbf{x}}) \pm \sqrt{\sum_{i=1}^{m}\left(\partial_{x_{i}} f(\overline{\mathbf{x}}) \sigma_{x_{i}}\right)^{2}}
$$

Definition 3 (Gradient vector). The gradient of a function $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{m}$ is a column vector ${ }^{1}$ containing the partial derivatives in each direction.

$$
\boldsymbol{\nabla} f(\mathbf{x})=\sum_{i=1}^{m} \partial_{x_{i}} f(\mathbf{x}) \mathbf{e}_{i}=\left(\begin{array}{c}
\partial_{x_{1}} f(\mathbf{x}) \\
\vdots \\
\partial_{x_{m}} f(\mathbf{x})
\end{array}\right)
$$

Theorem 2. The gradient vector always points towards the direction of steepest ascent, and thus is always perpendicular to contour lines.
Definition 4 (Directional derivative). A function $f(\mathbf{x})$ has a directional derivative in direction $\mathbf{r}($ with $|\mathbf{r}|=1)$ of

$$
\frac{\partial f}{\partial \mathbf{r}}=\nabla_{\mathbf{r}} f=\mathbf{r} \cdot \nabla f=\sum_{i=1}^{m} r_{i} \partial_{x_{i}} f
$$

Definition 5 (Jacobian Matrix). The Jacobian \mathbf{J}_{f} (sometimes written as $\frac{\partial\left(f_{1}, \ldots f_{m}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}$) of a function \mathbf{f} : $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a matrix $\in \mathbb{R}^{m \times n}$ whose entry at the i-th row and j-th column is given by $\left(\mathbf{J}_{f}\right)_{i, j}=\partial_{x_{j}} f_{i}$, so

$$
\mathbf{J}_{f}=\left(\begin{array}{ccc}
\partial_{x_{1}} f_{1} & \cdots & \partial_{x_{m}} f_{1} \\
\vdots & \ddots & \vdots \\
\partial_{x_{1}} f_{n} & \cdots & \partial_{x_{m}} f_{n}
\end{array}\right)=\left(\begin{array}{c}
\left(\boldsymbol{\nabla} f_{1}\right)^{t} \\
\vdots \\
\left(\boldsymbol{\nabla} f_{m}\right)^{t}
\end{array}\right)
$$

Remark 1. In the scalar case $(n=1)$ the Jacobian matrix is the transpose of the gradient vector.
Definition 6 (Hessian matrix). Given a function f : $\mathbb{R}^{m} \rightarrow \mathbb{R}$, the square matrix whose entry at the i-th row and j-th column is the second derivative of f first with respect to x_{j} and then to x_{i} is known as the Hessian matrix. $\left(\mathbf{H}_{f}\right)_{i, j}=\partial_{x_{i}} \partial_{x_{j}} f$ or

$$
\mathbf{H}_{f}=\left(\begin{array}{ccc}
\partial_{x_{1}} \partial_{x_{1}} f & \cdots & \partial_{x_{1}} \partial_{x_{m}} f \\
\vdots & \ddots & \vdots \\
\partial_{x_{m}} \partial_{x_{1}} f & \cdots & \partial_{x_{m}} \partial_{x_{m}} f
\end{array}\right)
$$

Because (almost always) the order of differentiation does not matter, it is a symmetric matrix.

[^0]
3 Methods for maximization and minimization problems

3.1 Analytical methods

Method 1 (Find stationary points). Given a function $f: D \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}$, to find its maxima and minima we shall consider the points

- that are on the boundary ${ }^{2}$ of the domain ∂D,
- where the gradient ∇f is not defined,
- that are stationary, i.e. where $\boldsymbol{\nabla} f=\mathbf{0}$.

Method 2 (Determine the type of stationary point for 2 dimensions). Given a scalar function of two variables $f(x, y)$ and a stationary point $\mathbf{x}_{s}\left(\right.$ where $\left.\boldsymbol{\nabla} f\left(\mathbf{x}_{s}\right)=\mathbf{0}\right)$, we define the discriminant

$$
\Delta=\partial_{x}^{2} f \partial_{y}^{2} f-\partial_{y} \partial_{x} f
$$

- if $\Delta>0$ then \mathbf{x}_{s} is an extrema, if $\partial_{x}^{2} f\left(\mathbf{x}_{s}\right)<0$ it is a maximum, whereas if $\partial_{x}^{2} f\left(\mathbf{x}_{s}\right)>0$ it is a minimum;
- if $\Delta<0$ then \mathbf{x}_{s} is a saddle point;
- if $\Delta=0$ we need to analyze further.

Remark 2. The previous method is obtained by studying the second directional derivative $\nabla_{\mathbf{r}} \nabla_{\mathbf{r}} f$ at the stationary point in direction of a vector $\mathbf{r}=$ $\mathbf{e}_{1} \cos (\alpha)+\mathbf{e}_{2} \sin (\alpha)$.

Method 3 (Determine the type of stationary point in higher dimensions). Given a scalar function of multiple variables $f(\mathbf{x})$ and a stationary point $\mathbf{x}_{s}\left(\nabla f\left(\mathbf{x}_{s}\right)=\mathbf{0}\right)$, we compute the Hessian matrix $\mathbf{H}_{f}\left(\mathbf{x}_{s}\right)$ and its eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$, then

- if all $\lambda_{i}>0$, the point is a minimum;
- if all $\lambda_{i}<0$, the point is a maximum;
- if there are both positive and negative eigenvalues, it is a saddle point.

In the other cases, when there are $\lambda_{i} \leq 0$ and/or $\lambda_{i} \geq 0$ further analysis is required.

Remark 3. Recall that to compute the eigenvalues of a matrix, one must solve the equation $(\mathbf{H}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$. Which can be done by solving the characteristic polynomial $\operatorname{det}(\mathbf{H}-\lambda \mathbf{I})=0$ to obtain $\operatorname{dim}(\mathbf{H}) \lambda_{i}$, which when plugged back in result in a overdetermined system of equations.

Method 4 (Quickly find the eigenvalues of a 2×2 matrix). This is a nice trick. For a square matrix \mathbf{H}, let

$$
m=\frac{1}{2} \operatorname{tr} \mathbf{H}=\frac{a+d}{2}, \quad p=\operatorname{det} \mathbf{H}=a d-b c
$$

then $\lambda_{1,2}=m \pm \sqrt{m^{2}-p}$.

[^1]

Figure 1: Intuition for the method of Lagrange multipliers. Extrema of a constrained function are where ∇f is proportional to ∇n.

Method 5 (Search for a constrained extremum in 2 dimensions). Let $n(x, y)=0$ be a constraint in the search of the extrema of a function $f: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$. To find the extrema we look for points

- on the boundary ${ }^{2} \mathbf{u} \in \partial D$ where $n(\mathbf{u})=0$;
- \mathbf{u} where the gradient either does not exist or is $\mathbf{0}$, and satisfy $n(\mathbf{u})=0$;
- that solve the system of equations

$$
\left\{\begin{array}{l}
\partial_{x} f(\mathbf{u}) \cdot \partial_{y} n(\mathbf{u})=\partial_{y} f(\mathbf{u}) \cdot \partial_{x} n(\mathbf{u}) \\
n(\mathbf{u})=0
\end{array}\right.
$$

Method 6 (Search for a constrained extremum in higher dimensions, method of Lagrange multipliers). We wish to find the extrema of $f: D \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}$ under $k<m$ constraints $n_{1}=0, \cdots, n_{k}=0$. To find the extrema we consider the following points:

- Points on the boundary ${ }^{2} \mathbf{u} \in \partial D$ that satisfy $n_{i}(\mathbf{u})=0$ for all $1 \leq i \leq k$,
- Points $\mathbf{u} \in D$ where either
- any of $\boldsymbol{\nabla} f, \nabla n_{1}, \ldots, \boldsymbol{\nabla} n_{k}$ do not exist, or
$-\nabla n_{1}, \ldots, \nabla n_{k}$ are linearly dependent, and that satisfy $0=n_{1}(\mathbf{u})=\ldots=n_{k}(\mathbf{u})$.
- Points that solve the system of $m+k$ equations

$$
\begin{cases}\nabla f(\mathbf{u})=\sum_{i=1}^{k} \lambda_{i} \nabla n_{i}(\mathbf{u}) & (m \text {-dimensional }) \\ n_{i}(\mathbf{u})=0 & \text { for } 1 \leq i \leq k\end{cases}
$$

The λ values are known as Lagrange multipliers.
The calculation of the last point can be written more compactly by defining the Lagrangian

$$
\mathcal{L}(\mathbf{u}, \boldsymbol{\lambda})=f(\mathbf{u})-\sum_{i=0}^{k} \lambda_{i} n_{i}(\mathbf{u})
$$

Figure 2: Double integral.
where $\boldsymbol{\lambda}=\lambda_{1}, \ldots, \lambda_{k}$ and then solving the $m+k$ dimensional equation $\boldsymbol{\nabla} \mathcal{L}(\mathbf{u}, \boldsymbol{\lambda})=\mathbf{0}$ (this is generally used in numerical computations and not very useful by hand).

3.2 Numerical methods

Method 7 (Newton's method). For a function f : $\mathbb{R}^{m} \rightarrow \mathbb{R}$ we wish to numerically find its stationary points (where $\boldsymbol{\nabla} f=\mathbf{0}$).

1. Pick a starting point \mathbf{x}_{0}.
2. Set the linearisation ${ }^{3}$ of ∇f at \mathbf{x}_{k} to zero and solve for \mathbf{x}_{k+1}.

$$
\begin{gathered}
\nabla f\left(\mathbf{x}_{k}\right)+\mathbf{H}_{f}\left(\mathbf{x}_{k}\right)\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)=\mathbf{0} \\
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\mathbf{H}_{f}^{-1}\left(\mathbf{x}_{k}\right) \boldsymbol{\nabla} f\left(\mathbf{x}_{k}\right)
\end{gathered}
$$

3. Repeat the last step until the magnitude of the error $|\boldsymbol{\epsilon}|=\left|\mathbf{H}_{f}^{-1}\left(\mathbf{x}_{k}\right) \boldsymbol{\nabla} f\left(\mathbf{x}_{k}\right)\right|$ is sufficiently small.

Method 8 (Gradient ascent / descent). Given f : $\mathbb{R}^{m} \rightarrow \mathbb{R}$ we wish to numerically find the stationary points (where $\boldsymbol{\nabla} f=\mathbf{0}$).

1. Define an arbitrarily small length η and a starting point \mathbf{x}_{0}
2. Compute $\mathbf{v}= \pm \boldsymbol{\nabla} f\left(\mathbf{x}_{k}\right)$ (positive for ascent, negative for descent), then $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\eta \mathbf{v}$ if the rate of change ϵ is acceptable $\left(\epsilon=\left|\nabla f\left(\mathbf{x}_{k+1}\right)\right|>0\right)$ else recompute $\mathbf{v}:= \pm \nabla f\left(\mathbf{x}_{k+1}\right)$.
3. Stop when the rate of change ϵ stays small enough for many iterations.

4 Integration of vector valued scalar functions

Theorem 3 (Change the order of integration for double integrals). For a double integral over a region S (see Fig. 2) we need to compute

$$
\iint_{S} f(x, y) d s=\int_{x_{1}}^{x_{2}} \int_{y_{1}(x)}^{y_{2}(x)} f(x, y) d y d x
$$

[^2]| | Volume $d v$ | Surface $d \mathbf{s}$ |
| :--- | :--- | :--- |
| Cartesian | - | $d x d y$ |
| Polar | - | $r d r d \phi$ |
| Curvilinear | - | $\left\|\mathbf{J}_{f}\right\| d u d v$ |
| Cartesian | $d x d y d z$ | $\hat{\mathbf{z}} d x d y$ |
| Cylindrical | $r d r d \phi d z$ | $\hat{\mathbf{z}} r d r d \phi$ |
| | | $\hat{\boldsymbol{\phi}} d r d z$ |
| | | $\hat{\mathbf{r}} r d \phi d z$ |
| Spherical | $r^{2} \sin \theta d r d \theta d \phi$ | $\hat{\mathbf{r}} r^{2} \sin \theta d \theta d \phi$ |
| Curvilinear | $\left\|\mathbf{J}_{f}\right\| d u d v d w$ | - |

Table 1: Differential elements for integration.

If $y_{1}(x)$ and $y_{2}(x)$ are bijective we can swap the order of integration by finding the inverse functions $x_{1}(y)$ and $x_{2}(y)$. If they are not bijective (like in Fig. 2), the region must be split into smaller parts. If the region is a rectangle it is always possible to change the order of integration.

Theorem 4 (Transformation of coordinates in 2 dimensions). Given two "nice" functions $x(u, v)$ and $y(u, v)$, that means are a bijection from S to S^{\prime} with continuous partial derivatives and nonzero Jacobian determinant $\left|\mathbf{J}_{f}\right|=\partial_{u} x \partial_{v} y-\partial_{v} x \partial_{u} y$, which transform the coordinate system. Then

$$
\iint_{S} f(x, y) d s=\iint_{S^{\prime}} f(x(u, v), y(u, v))\left|\mathbf{J}_{f}\right| d s
$$

Theorem 5 (Transformation of coordinates). The generalization of theorem 4 is quite simple. For an m-integral of a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ over a region B, we let $\mathbf{x}(\mathbf{u})$ be "nice" functions that transform the coordinate system. Then as before

$$
\int_{B} f(\mathbf{x}) d s=\int_{B^{\prime}} f(\mathbf{x}(\mathbf{u}))\left|\mathbf{J}_{f}\right| d s
$$

Application 4 (Physics). Given the mass m and density function ρ of an object, its center of mass is calculated with

$$
\mathbf{x}_{c}=\frac{1}{m} \int_{V} \mathbf{x} \rho(\mathbf{x}) d v \stackrel{\rho \text { const. }}{=} \frac{1}{V} \int_{V} \mathbf{x} d v .
$$

The (scalar) moment of inertia J of an object is given by

$$
J=\int_{V} \rho(\mathbf{r}) r^{2} d v
$$

5 Parametric curves, line and surface integrals

Definition 7 (Parametric curve). A parametric curve is a vector function $\mathcal{C}: \mathbb{R} \rightarrow W \subseteq \mathbb{R}^{n}, t \mapsto \mathbf{f}(t)$, that takes a parameter t.

Theorem 6 (Derivative of a curve). The derivative of a curve is

$$
\begin{aligned}
\mathbf{f}^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{\mathbf{f}(t+h)-\mathbf{f}(t)}{h} \\
& =\sum_{i=0}^{n}\left(\lim _{h \rightarrow 0} \frac{f_{i}(t+h)-f_{i}(t)}{h}\right) \mathbf{e}_{i} \\
& =\sum_{i=0}^{n} \frac{d f_{i}}{d t} \mathbf{e}_{i}=\left(\frac{d f_{1}}{d t}, \ldots, \frac{d f_{m}}{d t}\right)^{t} .
\end{aligned}
$$

Theorem 7 (Multivariable chain rule). Let $\mathrm{x}: \mathbb{R} \rightarrow$ \mathbb{R}^{m} and $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, so that $f \circ \mathbf{x}: \mathbb{R} \rightarrow \mathbb{R}$, then the multivariable chain rule states:

$$
\frac{d}{d t} f(\mathbf{x}(t))=\nabla f(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t)=\nabla_{\mathbf{x}^{\prime}(t)} f(\mathbf{x}(t))
$$

Theorem 8 (Signed area enclosed by a planar parametric curve). A planar (2D) parametric curve $(x(t), y(t))^{t}$ with $t \in[r, s]$ that does not intersect itself encloses a surface with area

$$
A=\int_{r}^{s} x^{\prime}(t) y(t) d t=\int_{r}^{s} x(t) y^{\prime}(t) d t
$$

Definition 8 (Line integral in a scalar field). Let \mathcal{C} : $[a, b] \rightarrow \mathbb{R}^{n}, t \mapsto \mathbf{x}(t)$ be a parametric curve. The line integral in a field $f(\mathbf{x})$ is the integral of the signed area under the curve traced in \mathbb{R}^{n}, and is computed with

$$
\int_{\mathcal{C}} f(\mathbf{x}) d \ell=\int_{\mathcal{C}} f(\mathbf{x})|d \mathbf{x}|=\int_{a}^{b} f(\mathbf{x}(t))\left|\mathbf{x}^{\prime}(t)\right| d t
$$

Application 5 (Length of a parametric curve). By computing the line integral of the function $1(\mathbf{x})$ we get the length of the parametric curve $\mathcal{C}:[a, b] \rightarrow \mathbb{R}^{n}$.

$$
\int_{\mathcal{C}} d \ell=\int_{\mathcal{C}}|d \mathbf{x}|=\int_{a}^{b} \sqrt{\sum_{i=1}^{n} x_{i}^{\prime}(t)^{2}} d t
$$

The special case with the scalar function $f(x)$ results in $\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x$.

Definition 9 (Line integral in a vector field). The line integral in a vector field $\mathbf{F}(\mathbf{x})$ is the "sum" of the projections of the field's vectors on the tangent of the parametric curve \mathcal{C}.

$$
\int_{\mathcal{C}} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

Theorem 9 (Line integral in the opposite direction). By integrating while moving backwards $(-t)$ on the parametric curve gives

$$
\int_{-\mathcal{C}} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}=-\int_{\mathcal{C}} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}
$$

Definition 10 (Conservative field). A vector field is said to be conservative the line integral over a closed path is zero.

$$
\oint_{\mathcal{C}} \mathbf{F}(\mathbf{r}) \cdot d \mathbf{r}=0
$$

Theorem 10. For a twice partially differentiable vector field $\mathbf{F}(\mathbf{x})$ in n dimensions without "holes", i.e. in which each closed curve can be contracted to a point (simply connected open set), the following statements are equivalent:

- \mathbf{F} is conservative,
- \mathbf{F} is path-independent,
- \mathbf{F} is a gradient field, i.e. there is a function ϕ called potential such that $\mathbf{F}=\boldsymbol{\nabla} \phi$,
- \mathbf{F} satisfies the condition $\partial_{x_{j}} F_{i}=\partial_{x_{i}} F_{j}$ for all $i, j \in$ $\{1,2, \ldots, n\}$. In the 2D case $\partial_{x} F_{y}=\partial_{y} F_{x}$, and in 3D

$$
\left\{\begin{array}{l}
\partial_{y} F_{x}=\partial_{x} F_{y} \\
\partial_{z} F_{y}=\partial_{y} F_{z} \\
\partial_{x} F_{z}=\partial_{z} F_{x}
\end{array}\right.
$$

Theorem 11. In a conservative field \mathbf{F} with gradient ϕ, using the multivariable the chain rule:

$$
\begin{aligned}
\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r} & =\int_{\mathcal{C}} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{\mathcal{C}} \boldsymbol{\nabla} \phi(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{\mathcal{C}} \frac{d \phi(\mathbf{r}(t))}{d t} d t=\phi(\mathbf{r}(b))-\phi(\mathbf{r}(a)) .
\end{aligned}
$$

Definition 11 (Parametric surface). A parametric surface is a vector function $\mathcal{S}: W \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$.

Theorem 12 (Area of a parametric surface). The area spanned by a parametric surface $\mathbf{s}(u, v)$, with continuous partial derivatives and that satisfy $\partial_{u} \mathbf{s} \times \partial_{v} \mathbf{s} \neq \mathbf{0}$, is given by

$$
A=\int_{\mathcal{S}} d s=\iint\left|\partial_{u} \mathbf{s} \times \partial_{v} \mathbf{s}\right| d u d v
$$

Definition 12 (Scalar surface integral). Let $f: \mathbb{R}^{3} \rightarrow$ \mathbb{R} be a function on a parametric surface $\mathbf{s}: W \subseteq \mathbb{R}^{2} \rightarrow$ \mathbb{R}^{3}. The surface integral of f over \mathcal{S} is

$$
\int_{\mathcal{S}} f d s=\iint_{W} f(\mathbf{s}(u, v)) \cdot\left|\partial_{u} \mathbf{s} \times \partial_{v} \mathbf{s}\right| d u d v
$$

6 Vector analysis

Definition 13 (Flux). In a vector field $\mathbf{F}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ we define the flux through a parametric surface \mathcal{S} as

$$
\Phi=\int_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{s}=\int_{\mathcal{S}} \mathbf{F} \cdot \hat{\mathbf{n}} d s
$$

If \mathcal{S} is a closed surface we write $\stackrel{\circ}{\Phi}=\oint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{s}$.
If we now take the normalized flux on the surface of an arbitrarily small volume V (limit as $V \rightarrow 0$) we get the divergence

$$
\nabla \cdot \mathbf{F}=\lim _{V \rightarrow 0} \frac{1}{V} \oint_{\partial V} \mathbf{F} \cdot d \mathbf{s}
$$

Theorem 13 (Formula for divergence). Let $\mathbf{F}: \mathbb{R}^{m} \rightarrow$ \mathbb{R}^{m} be a vector field. The divergence of $\mathbf{F}=$ $\left(F_{x_{1}}, \ldots, F_{x_{m}}\right)^{t}$ is

$$
\nabla \cdot \mathbf{F}=\sum_{i=1}^{m} \partial_{x_{i}} F_{x_{i}}
$$

as suggested by the (ab)use of the dot product notation.

Theorem 14 (Divergence theorem, Gauss's theorem). Because the flux on the boundary ∂V of a volume V contains information of the field inside of V, it is possible relate the two with

$$
\int_{V} \boldsymbol{\nabla} \cdot \mathbf{F} d v=\oint_{\partial V} \mathbf{F} \cdot d \mathbf{s}
$$

Definition 14 (Circulation, Vorticity). The result of a closed line integral can be interpreted as a macroscopic measure how much the field rotates around a given point, and is thus sometimes called circulation or vorticity.

As before, if we now make the area A enclosed by the parametric curve for the circulation arbitrarily small, normalize it, and use Gauss's theorem we get a local measure called curl.

$$
\nabla \times \mathbf{F}=\lim _{A \rightarrow 0} \frac{\hat{\mathbf{n}}}{A} \oint_{\partial A} \mathbf{F} \cdot d \mathbf{s}
$$

Notice that the curl is a vector, normal to the enclosed surface A.

Theorem 15 (Formula for curl). Let \mathbf{F} be a vector field. In 2 dimensions

$$
\boldsymbol{\nabla} \times \mathbf{F}=\left(\partial_{x} F_{y}-\partial_{y} F_{x}\right) \hat{\mathbf{z}}
$$

And in 3D

$$
\boldsymbol{\nabla} \times \mathbf{F}=\left(\begin{array}{c}
\partial_{y} F_{z}-\partial_{z} F_{y} \\
\partial_{z} F_{x}-\partial_{x} F_{z} \\
\partial_{x} F_{y}-\partial_{y} F_{x}
\end{array}\right)=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\partial_{x} & \partial_{y} & \partial_{z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right| .
$$

Theorem 16 (Stokes' theorem).

$$
\int_{\mathcal{S}} \nabla \times \mathbf{F} \cdot d \mathbf{s}=\oint_{\partial \mathcal{S}} \mathbf{F} \cdot d \mathbf{r}
$$

Theorem 17 (Green's theorem). The special case of Stokes' theorem in 2D is knowns as Green's theorem.

$$
\int_{\mathcal{S}} \partial_{x} F_{y}-\partial_{y} F_{x} d s=\oint_{\partial \mathcal{S}} \mathbf{F} \cdot d \mathbf{r}
$$

Definition 15 (Laplacian operator). A second vector derivative is so important that it has a special name. For a scalar function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ the divergence of the gradient

$$
\nabla^{2}=\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} f)=\sum_{i=1}^{m} \partial_{x_{i}}^{2} f_{x_{i}}
$$

is called the Laplacian operator.

Definition 16 (Vector Laplacian). The Laplacian operator can be extended on a vector field \mathbf{F} to the Laplacian vector by applying the Laplacian to each component:

$$
\nabla^{2} \mathbf{F}=\left(\nabla^{2} F_{x}\right) \hat{\mathbf{x}}+\left(\nabla^{2} F_{y}\right) \hat{\mathbf{y}}+\left(\nabla^{2} F_{z}\right) \hat{\mathbf{z}}
$$

The vector Laplacian can also be defined as

$$
\boldsymbol{\nabla}^{2} \mathbf{F}=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{F})-\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{F})
$$

Theorem 18 (Product rules and second derivatives). Let f, g be sufficiently differentiable scalar functions $D \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}$ and \mathbf{A}, \mathbf{B} be sufficiently differentiable vector fields in \mathbb{R}^{m} (with $m=2$ or 3 for equations with the curl).

- Rules with the gradient

$$
\begin{aligned}
\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A}) & =\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \mathbf{A}+\boldsymbol{\nabla}^{2} \mathbf{A} \\
\boldsymbol{\nabla}(f \cdot g) & =(\boldsymbol{\nabla} f) \cdot g+f \cdot \boldsymbol{\nabla} g \\
\boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{B}) & =(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A} \\
& +\mathbf{A} \times(\boldsymbol{\nabla} \times \mathbf{B})+\mathbf{B} \times(\boldsymbol{\nabla} \times \mathbf{A})
\end{aligned}
$$

- Rules with the divergence

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} f) & =\nabla^{2} f \\
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \mathbf{A}) & =0 \\
\boldsymbol{\nabla} \cdot(f \cdot \mathbf{A}) & =(\boldsymbol{\nabla} f) \cdot \mathbf{A}+f \cdot(\boldsymbol{\nabla} \cdot \mathbf{A}) \\
\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B}) & =(\boldsymbol{\nabla} \times \mathbf{A}) \cdot \mathbf{B}-\mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{B})
\end{aligned}
$$

- Rules with the curl

$$
\begin{aligned}
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} f) & =\mathbf{0} \\
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \mathbf{A}) & =\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{A})-\boldsymbol{\nabla}^{2} \mathbf{A} \\
\boldsymbol{\nabla} \times\left(\boldsymbol{\nabla}^{2} \mathbf{A}\right) & =\boldsymbol{\nabla}^{2}(\boldsymbol{\nabla} \times \mathbf{A}) \\
\boldsymbol{\nabla} \times(f \cdot \mathbf{A}) & =(\boldsymbol{\nabla} f) \times \mathbf{A}+f \cdot \boldsymbol{\nabla} \times \mathbf{A} \\
\boldsymbol{\nabla} \times(\mathbf{A} \times \mathbf{B}) & =(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}-(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B} \\
& +\mathbf{A} \cdot(\boldsymbol{\nabla} \cdot \mathbf{B})-\mathbf{B} \cdot(\boldsymbol{\nabla} \cdot \mathbf{A})
\end{aligned}
$$

License

This work is licensed under a "CC BY-NC-SA 4.0" license.

[^0]: ${ }^{1}$ In matrix notation it is also often defined as row vector to avoid having to do some transpositions in the Jacobian matrix and dot products in directional derivatives

[^1]: ${ }^{2}$ If it belongs to f.

[^2]: ${ }^{3}$ The gradient becomes a hessian matrix.

