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1 Preface
These are just my personal notes of the FuVar
course, and definitively not a rigorously constructed
mathematical text. The good looking LATEX type-
setting may trick you into thinking it is rigorous,
but really, it is not.

2 Derivatives of vector valued
scalar functions

Definition 1 (Partial derivative). A vector values
function f : Rm → R, with v ∈ Rm, has a partial
derivative with respect to vi defined as

∂vif(v) = fvi(v) = lim
h→0

f(v + hej)− f(v)
h

Proposition 1. Under some generally satisfied
conditions (continuity of n-th order partial deriva-
tives) Schwarz’s theorem states that it is possible
to swap the order of differentiation.

∂x∂yf(x, y) = ∂y∂xf(x, y)

Definition 2 (Linearization). A function f : Rm →
R has a linearization g at x0 given by

g(x) = f(x0) +

m∑
i=1

∂xi
f(x0)(xi − xi,0),

if all partial derviatives are defined at x0.

Theorem 1 (Propagation of uncertanty). Given a
measurement of m values in a vector x ∈ Rm with
values given in the form xi = x̄i ± σxi

, a linear
approximation the error of a dependent variable y
is computed with

y = ȳ ± σy ≈ f(x̄)±

√√√√ m∑
i=1

(∂xif(x̄)σxi)
2

Definition 3 (Gradient vector). The gradient of a
function f(x), x ∈ Rm is a vector containing the

derivatives in each direction.

∇f(x) =
m∑
i=1

∂xif(x)ei =

∂x1
f(x)
...

∂xmf(x)


Definition 4 (Directional derivative). A function
f(x) has a directional derivative in direction r (with
|r| = 1) given by

∂f

∂r = ∇rf = r ·∇f

Theorem 2. The gradient vector always points to-
wards the direction of steepest ascent.

3 Methods for maximization
and minimization problems

Method 1 (Find stationary points). Given a func-
tion f : D ⊆ Rm → R, to find its maxima and
minima we shall consider the points

• that are on the boundary of the domain ∂D,

• where the gradient ∇f is not defined,

• that are stationary, i.e. where ∇f = 0.

Method 2 (Determine the type of stationary point
for 2 dimensions). Given a scalar function of two
variables f(x, y) and a stationary point xs (where
∇f(xs) = 0), we define the discriminant

∆ = ∂2
xf∂

2
yf − ∂y∂xf

• if ∆ > 0 then xs is an extrema, if ∂2
xf(xs) < 0

it is a maximum, whereas if ∂2
xf(xs) > 0 it is a

minimum;

• if ∆ < 0 then xs is a saddle point;

• if ∆ = 0 we need to analyze further.

Remark 1. The previous method is obtained by
studying the second directional derivative ∇r∇rf
at the stationary point in direction of a vector r =
e1 cos(α) + e2 sin(α)
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Definition 5 (Hessian matrix). Given a function
f : Rm → R, the square matrix whose entry at the
i-th row and j-th column is the second derivative of
f first with respect to xj and then to xi is know as
the Hessian matrix. (Hf )i,j = ∂xi∂xjf or

Hf =

∂x1
∂x1

f · · · ∂x1
∂xm

f
... . . . ...

∂xm∂x1f · · · ∂xm∂xmf


Because (almost always) the order of differentiation
does not matter, it is a symmetric matrix.

Method 3 (Determine the type of stationary point
in higher dimensions). Given a scalar function of
two variables f(x, y) and a stationary point xs

(where ∇f(xs) = 0), we compute the Hessian
matrix Hf (xs). Then we compute its eigenvalues
λ1, . . . , λm and

• if all λi > 0, the point is a minimum;

• if all λi < 0, the point is a maximum;

• if there are both positive and negative eigen-
values, it is a saddle point.

In the other cases, when there are λi ≤ 0 and/or
λi ≥ 0 further analysis is required.

Remark 2. Recall that to compute the eigenvalues
of a matrix, one must solve the equation (H−λI)x =
0. Which can be done by solving the characteristic
polynomial det (H − λI) = 0 to obtain dim(H) λi,
which when plugged back in result in a overdeter-
mined system of equations.

Method 4 (Quickly find the eigenvalues of a 2× 2
matrix). Let

m =
1

2
tr H =

a+ d

2
and p = det H = ad− bc,

then
λ = m±

√
m2 − p.

Method 5 (Search for a constrained extremum in 2
dimensions). Let n(x, y) = 0 be a constraint in the
search of the extrema of a function f : D ⊆ R2 → R.
To find the extrema we look for points

• on the boundary u ∈ ∂D where n(u) = 0;

• u where the gradient either does not exist or is
0, and satisfy n(u) = 0;

• that solve the system of equations{
∂xf(u) · ∂yn(u) = ∂yf(u) · ∂xn(u)
n(u) = 0

Method 6 (Search for a constrained extremum in
higher dimensions, method of Lagrange multipli-
ers). We wish to find the extrema of f : D ⊆ Rm →
R under k < m constraints n1 = 0, · · · , nk = 0. To
find the extrema we consider the following points:

• Points on the boundary u ∈ ∂D that satisfy
ni(u) = 0 for all 1 ≤ i ≤ k,

• Points u ∈ D where either

– any of ∇f,∇n1, . . . ,∇nk do not exist, or
– ∇n1, . . . ,∇nk are linearly dependent,

and that satisfy 0 = n1(u) = . . . = nk(u).

• Points that solve the system of m+k equations
∇f(u) =

k∑
i=1

λi∇ni(u) (m-dimensional)

ni(u) = 0 for 1 ≤ i ≤ k

The λ values are known as Lagrange multipli-
ers. The same calculation can be written more
compactly by defining the m + k dimensional
Lagrangian

L(u,λ) = f(u)−
k∑

i=0

λini(u)

where λ = λ1, . . . , λk and then evaluating
∇L(u,λ) = 0.

4 Integration
Remark 3.
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