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1 Preface
These are just my personal notes of the FuVar course,
and definitively not a rigorously constructed mathe-
matical text. The good looking LATEX typesetting may
trick you into thinking it is rigorous, but really, it is
not.

2 Derivatives of vector valued
scalar functions

Definition 1 (Partial derivative). A vector valued
function f : Rm → R, with v ∈ Rm, has a partial
derivative with respect to vi defined as

∂vi
f(v) = ∂f

∂vi
= lim

h→0

f(v + hei) − f(v)
h

Theorem 1. (Schwarz’s theorem, symmetry of partial
derivatives) Under some generally satisfied conditions
(continuity of n-th order partial derivatives) Schwarz’s
theorem states that it is possible to swap the order of
differentiation.

∂x∂yf(x, y) = ∂y∂xf(x, y)

Application 1 (Find the slope of an implicit curve).
Let f(x, y) = 0 be an implicit curve. It’s slope at any
point where ∂yf 6= 0 is m = −∂xf/∂yf

Definition 2 (Total differential). The total differential
df of f : Rm → R is

df =
m∑

i=0
∂xi

f · dx.

That reads, the total change is the sum of the change
in each direction. This implies

df

dxk
= ∂f

∂xk
+

∑
i∈{1≤i≤m:i6=k}

∂f

∂xi
· dxi

dxk
,

i.e. the change in direction xk is how f changes in xk

(ignoring other directions) plus, how f changes with
respect to each other variable xi times how it (xi)
changes with respect to xk.

Application 2 (Linearization). A function f : Rm →
R has a linearization g at x0 given by

g(x) = f(x0) +
m∑

i=1
∂xif(x0)(xi − xi,0),

if all partial derivatives are defined at x0. With the
gradient (defined below) g(x) = f(x0) + ∇f(x0) · (x −
x0).

Application 3 (Propagation of uncertanty). Given a
measurement of m values in a vector x ∈ Rm with
values given in the form xi = x̄i ± σxi

, a linear approx-
imation the error of a dependent variable y is computed
with

y = ȳ ± σy ≈ f(x̄) ±

√√√√ m∑
i=1

(∂xi
f(x̄)σxi

)2

Definition 3 (Gradient vector). The gradient of a
function f(x), x ∈ Rm is a column vector1 containing
the derivatives in each direction.

∇f(x) =
m∑

i=1
∂xif(x)ei =

∂x1f(x)
...

∂xmf(x)


Theorem 2. The gradient vector always points to-
wards the direction of steepest ascent, and thus is al-
ways perpendicular to contour lines.

Definition 4 (Directional derivative). A function f(x)
has a directional derivative in direction r (with |r| = 1)
of

∂f

∂r = ∇rf = r · ∇f

Definition 5 (Jacobian Matrix). The Jacobian Jf

(sometimes written as ∂(f1,...fm)
∂(x1,...,xn) ) of a function f :

Rn → Rm is a matrix ∈ Rn×m whose entry at the
i-th row and j-th column is given by (Jf )i,j = ∂xj fi,
so

Jf =

 ∂x1f1 · · · ∂xn
f1

... . . . ...
∂x1fm · · · ∂xn

fm

 =

 (∇f1)t

...
(∇fm)t


Remark 1. In the scalar case (m = 1) the Jacobian
matrix is the transpose of the gradient vector.

Definition 6 (Hessian matrix). Given a function f :
Rm → R, the square matrix whose entry at the i-th row
and j-th column is the second derivative of f first with
respect to xj and then to xi is known as the Hessian
matrix. (Hf )i,j = ∂xi

∂xj
f or

Hf =

∂x1∂x1f · · · ∂x1∂xm
f

... . . . ...
∂xm∂x1f · · · ∂xm∂xmf


Because (almost always) the order of differentiation
does not matter, it is a symmetric matrix.

1In matrix notation it is also often defined as row vector to
avoid having to do some transpositions in the Jacobian matrix
and dot products in directional derivatives
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3 Methods for maximization and
minimization problems

3.1 Analytical methods
Method 1 (Find stationary points). Given a function
f : D ⊆ Rm → R, to find its maxima and minima we
shall consider the points

• that are on the boundary2 of the domain ∂D,

• where the gradient ∇f is not defined,

• that are stationary, i.e. where ∇f = 0.

Method 2 (Determine the type of stationary point for
2 dimensions). Given a scalar function of two variables
f(x, y) and a stationary point xs (where ∇f(xs) = 0),
we define the discriminant

∆ = ∂2
xf∂2

yf − ∂y∂xf

• if ∆ > 0 then xs is an extrema, if ∂2
xf(xs) < 0

it is a maximum, whereas if ∂2
xf(xs) > 0 it is a

minimum;

• if ∆ < 0 then xs is a saddle point;

• if ∆ = 0 we need to analyze further.

Remark 2. The previous method is obtained by
studying the second directional derivative ∇r∇rf at
the stationary point in direction of a vector r =
e1 cos(α) + e2 sin(α).

Method 3 (Determine the type of stationary point in
higher dimensions). Given a scalar function of multiple
variables f(x) and a stationary point xs (∇f(xs) = 0),
we compute the Hessian matrix Hf (xs) and its eigen-
values λ1, . . . , λm, then

• if all λi > 0, the point is a minimum;

• if all λi < 0, the point is a maximum;

• if there are both positive and negative eigenvalues,
it is a saddle point.

In the other cases, when there are λi ≤ 0 and/or λi ≥ 0
further analysis is required.

Remark 3. Recall that to compute the eigenvalues of
a matrix, one must solve the equation (H − λI)x = 0.
Which can be done by solving the characteristic poly-
nomial det (H − λI) = 0 to obtain dim(H) λi, which
when plugged back in result in a overdetermined sys-
tem of equations.

Method 4 (Quickly find the eigenvalues of a 2 × 2
matrix). This is a nice trick. For a square matrix H,
let

m = 1
2

tr H = a + d

2
, p = det H = ad − bc,

then λ1,2 = m ±
√

m2 − p.
2If it belongs to f .

Figure 1: Intuition for the method of Lagrange mul-
tipliers. Extrema of a constrained function are where
∇f is proportional to ∇n.

Method 5 (Search for a constrained extremum in 2
dimensions). Let n(x, y) = 0 be a constraint in the
search of the extrema of a function f : D ⊆ R2 → R.
To find the extrema we look for points

• on the boundary2 u ∈ ∂D where n(u) = 0;

• u where the gradient either does not exist or is 0,
and satisfy n(u) = 0;

• that solve the system of equations{
∂xf(u) · ∂yn(u) = ∂yf(u) · ∂xn(u)
n(u) = 0

Method 6 (Search for a constrained extremum in
higher dimensions, method of Lagrange multipliers).
We wish to find the extrema of f : D ⊆ Rm → R un-
der k < m constraints n1 = 0, · · · , nk = 0. To find the
extrema we consider the following points:

• Points on the boundary2 u ∈ ∂D that satisfy
ni(u) = 0 for all 1 ≤ i ≤ k,

• Points u ∈ D where either

– any of ∇f, ∇n1, . . . , ∇nk do not exist, or
– ∇n1, . . . , ∇nk are linearly dependent,

and that satisfy 0 = n1(u) = . . . = nk(u).

• Points that solve the system of m + k equations
∇f(u) =

k∑
i=1

λi∇ni(u) (m-dimensional)

ni(u) = 0 for 1 ≤ i ≤ k

The λ values are known as Lagrange multipliers.
The same calculation can be written more com-
pactly by defining the Lagrangian

L(u, λ) = f(u) −
k∑

i=0
λini(u),
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Figure 2: Double integral.

where λ = λ1, . . . , λk and then solving the m + k
dimensional equation ∇L(u, λ) = 0 (this is gener-
ally used in numerical computations and not very
useful by hand).

3.2 Numerical methods
Method 7 (Newton’s method). For a function f :
Rm → R we wish to numerically find its stationary
points (where ∇f = 0).

1. Pick a starting point x0

2. Set the linearisation3 of ∇f at xk to zero and solve
for xk+1

∇f(xk) + Hf (xk)(xk+1 − xk) = 0
xk+1 = xk − H−1

f (xk)∇f(xk)

3. Repeat the last step until the magnitude of the
error |ϵ| = |H−1

f (xk)∇f(xk)| is sufficiently small.

Method 8 (Gradient ascent / descent). Given f :
Rm → R we wish to numerically find the stationary
points (where ∇f = 0).

1. Define an arbitrarily small length η and a starting
point x0

2. Compute v = ±∇f(xk) (positive for ascent, neg-
ative for descent), then xk+1 = xk + ηv if the rate
of change ϵ is acceptable (ϵ = |∇f(xk+1)| > 0)
else recompute v := ±∇f(xk+1).

3. Stop when the rate of change ϵ stays small enough
for many iterations.

4 Integration of vector valued
scalar functions

Theorem 3 (Change the order of integration for dou-
ble integrals). For a double integral over a region S
(see Fig. 2) we need to compute

�
S

f(x, y) ds =
x2�

x1

y2(x)�

y1(x)

f(x, y) dydx.

3The gradient becomes a hessian matrix.

Volume dv Surface ds
Cartesian − dx dy
Polar − rd rdϕ
Curvilinear − |Jf | du dv

Cartesian dx dy dz ẑ dx dy
Cylindrical r dr dϕ dz ẑr dr dϕ

ϕ̂ dr dz
r̂r dϕ dz

Spherical r2 sin θ dr dθ dϕ r̂r2 sin θ dθ dϕ
Curvilinear |Jf | du dv dw −

Table 1: Differential elements for integration.

If y1(x) and y2(x) are bijective we can swap the order of
integration by finding the inverse functions x1(y) and
x2(y). If they are not bijective (like in Fig. 2), the
region must be split into smaller parts. If the region is
a rectangle it is always possible to change the order of
integration.
Theorem 4 (Transformation of coordinates in 2 di-
mensions). Given two “nice” functions x(u, v) and
y(u, v), that means are a bijection from S to S′ with
continuous partial derivatives and nonzero Jacobian
determinant |Jf | = ∂ux∂vy − ∂vx∂uy, which transform
the coordinate system. Then�

S

f(x, y) ds =
�

S′
f(x(u, v), y(u, v))|Jf | ds

Theorem 5 (Transformation of coordinates). The
generalization of theorem 4 is quite simple. For an
m-integral of a function f : Rm → R over a region
B, we let x(u) be “nice” functions that transform the
coordinate system. Then as before�

B

f(x) ds =
�

B′
f(x(u))|Jf | ds

Application 4 (Physics). Given the mass m and den-
sity function ρ of an object, its center of mass is calcu-
lated with

xc = 1
m

�
V

xρ(x) dv
ρ const.= 1

V

�
V

x dv.

The (scalar) moment of inertia J of an object is given
by

J =
�

V

ρ(r)r2 dv.

5 Parametric curves, line and
surface integrals

Definition 7 (Parametric curve). A parametric curve
is a vector function C : R → W ⊆ Rn, t 7→ f(t), that
takes a parameter t.
Definition 8 (Multivariable chain rule). Let x : R →
Rm and f : Rm → R, so that f ◦ x : R → R, then the
multivariable chain rule states:

d

dt
f(x(t)) = ∇f(x(t)) · x′(t) = ∇x′(t)f(x(t))
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Theorem 6 (Signed area enclosed by a planar
parametric curve). A planar (2D) parametric curve
(x(t), y(t))t with t ∈ [r, s] that does not intersect it-
self encloses a surface with area

A =
� s

r

x′(t)y(t) dt =
� s

r

x(t)y′(t) dt

Theorem 7 (Derivative of a curve). The derivative of
a curve is

f ′(t) = lim
h→0

f(t + h) − f(t)
h

=
n∑

i=0

(
lim
h→0

fi(t + h) − fi(t)
h

)
ei

=
n∑

i=0

dfi

dt
ei =

(
df1

dt
, . . . ,

dfm

dt

)t

Definition 9 (Line integral in a scalar field). Let C :
[a, b] → Rn, t 7→ x(t) be a parametric curve. The line
integral in a field f(x) is the integral of the signed area
under the curve traced in Rn, and is computed with

�
C

f(x) dℓ =
�

C
f(x) |dx| =

� b

a

f(x(t))|x′(t)| dt

Application 5 (Length of a parametric curve). By
computing the line integral of the function 1(t) = 1 we
get the length of the parametric curve C : [a, b] → Rn.

�
C

dℓ =
�

C
|dx| =

� b

a

√√√√ n∑
i=1

x′
i(t)2 dt

In the special case with the scalar function f(x) results
in
� b

a

√
1 + f ′(x)2 dx

Definition 10 (Line integral in a vector field). The
line integral in a vector field F(x) is “sum” of the pro-
jections of the field’s vectors on the tangent of the para-
metric curve C.

�
C

F(r) · dr =
� b

a

F(r(t)) · r′(t) dt

Theorem 8 (Line integral in the opposite direction).
By integrating while moving backwards (−t) on the
parametric curve gives

�
−C

F(r) · dr = −
�

C
F(r) · dr

Definition 11 (Conservative field). A vector field is
said to be conservative the line integral over a closed
path is zero. �

C
F(r) · dr = 0

Theorem 9. For a twice partially differentiable vec-
tor field F(x) in n dimensions without “holes”, i.e. in
which each closed curve can be contracted to a point
(simply connected open set), the following statements
are equivalent:

• F is conservative

• F is path-independent

• F is a gradient field, i.e. there is a function ϕ called
potential such that F = ∇ϕ

• F satisfies the condition ∂xj
Fi = ∂xi

Fj for all i, j ∈
{1, 2, . . . , n}. In the 2D case ∂xFy = ∂yFx, and in
3D 

∂yFx = ∂xFy

∂zFy = ∂yFz

∂xFz = ∂zFx

Theorem 10. In a conservative field F with gradient
ϕ, using the multivariable the chain rule:�

C
F · dr =

�
C

F(r(t)) · r′(t) dt

=
�

C
∇ϕ(r(t)) · r′(t) dt

=
�

C

dϕ(r(t))
dt

dt = ϕ(r(b)) − ϕ(r(a))

Definition 12 (Parametric surface). A parametric
surface is a vector function S : W ⊆ R2 → R3.
Theorem 11 (Area of a parametric surface). The area
spanned by a parametric surface s(u, v), with continu-
ous partial derivatives and that satisfy ∂us × ∂vs 6= 0,
is given by

A =
�

S
ds =

�
|∂us × ∂vs| dudv

Definition 13 (Scalar surface integral). Let f : R3 →
R be a function on a parametric surface s : W ⊆ R2 →
R3. The surface integral of f over S is�

S
f ds =

�
W

f(s(u, v)) · |∂us × ∂vs| dudv

6 Vector analysis
Definition 14 (Flux). In a vector field F : Rm → Rn

we define the flux through a parametric surface S as

Φ =
�

S
F · ds =

�
S

F · n̂ ds.

If S is a closed surface we write Φ̊ =
�

S F · ds.
If we now take the normalized flux on the surface

of an arbitrarily small (limit) volume V we get the
divergence

∇· F = lim
V →0

1
V

�
∂V

F · ds.

Theorem 12 (Formula for divergence). Let F : Rm →
Rm be a vector field. The divergence of F =
(Fx1 , . . . , Fxm

)t is

∇· F =
m∑

i=1
∂xi

Fxi
,

as suggested by the (ab)use of the dot product nota-
tion.
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Theorem 13 (Divergence theorem, Gauss’s theorem).
Because the flux on the boundary ∂V of a volume V
contains information of the field inside of V , it is pos-
sible relate the two with

�
V

∇· F dv =
�

∂V

F · ds.

Definition 15 (Circulation, Vorticity). The result of
a closed line integral can be interpreted as a macro-
scopic measure how much the field rotates around a
given point, and is thus sometimes called circulation
or vorticity.

As before, if we now make the area A enclosed by the
parametric curve for the circulation arbitrarily small,
normalize it, and use Gauss’s theorem we get a local
measure called curl

∇× F = lim
A→0

n̂
A

�
∂A

F · ds

Notice that the curl is a vector, normal to the enclosed
surface A.

Theorem 14 (Formula for curl). Let F be a vector
field. In 2 dimensions

∇× F = (∂xFy − ∂yFx) ẑ.

And in 3D

∇× F =

∂yFz − ∂zFy

∂zFx − ∂xFz

∂xFy − ∂yFx

 =

∣∣∣∣∣∣
x̂ ŷ ẑ
∂x ∂y ∂z

Fx Fy Fz

∣∣∣∣∣∣ .

Theorem 15 (Stokes’ theorem).
�

S
∇× F · ds =

�
∂S

F · dr

Theorem 16 (Green’s theorem). The special case of
Stokes’ theorem in 2D is knowns as Green’s theorem.

�
S

∂xFy − ∂yFx ds =
�

∂S
F · dr

Definition 16 (Laplacian operator). A second vector
derivative is so important that it has a special name.
For a scalar function f : Rm → R the divergence of the
gradient

∇2 = ∇·(∇f) =
m∑

i=1
∂2

xi
fxi

is called the Laplacian operator.

Definition 17 (Vector Laplacian). The Laplacian op-
erator can be extended on a vector field F to the Lapla-
cian vector by applying the Laplacian to each compo-
nent:

∇2 F = (∇2 Fx)x̂ + (∇2 Fy)ŷ + (∇2 Fz)ẑ.

The vector laplacian can also be defined as

∇2 F = ∇(∇· F) − ∇×(∇× F).

Theorem 17 (Product rules and second derivatives).
Let f, g be sufficiently differentiable scalar functions
D ⊆ Rm → R and A, B be sufficiently differentiable
vector fields in Rm (with m = 2 or 3 for equations with
the curl).

• Rules with the gradient

∇(∇· A) = ∇× ∇× A + ∇2 A
∇(f · g) = (∇f) · g + f · ∇g

∇(A · B) = (A · ∇)B + (B · ∇)A
+ A × (∇× B) + B × (∇× A)

• Rules with the divergence

∇·(∇f) = ∇2 f

∇·(∇× A) = 0
∇·(f · A) = (∇f) · A + f · (∇· A)

∇·(A × B) = (∇× A) · B − A · (∇× B)

• Rules with the curl

∇×(∇f) = 0
∇×(∇× A) = ∇(∇· A) − ∇2 A

∇×(∇2 A) = ∇2(∇× A)
∇×(f · A) = (∇f) × A + f · ∇× A

∇×(A × B) = (B · ∇)A − (A · ∇)B
+ A · (∇· B) − B · (∇· A)

License
This work is licensed under a “CC BY-NC-SA 4.0”
license.
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