FuVar Notes

Naoki Pross - naoki.pross@ost.ch
Spring Semseter 2021

1 Preface

These are just my personal notes of the FuVar course, and definitively not a rigorously constructed mathematical text. The good looking $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ typesetting may trick you into thinking it is rigorous, but really, it is not.

2 Derivatives of vector valued functions

Definition 1 (Partial derivative). A vector values function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, with $\mathbf{v} \in \mathbb{R}^{m}$, has a partial derivative with respect to v_{i} defined as

$$
\partial_{v_{i}} f(\mathbf{v})=f_{v_{i}}(\mathbf{v})=\lim _{h \rightarrow 0} \frac{f\left(\mathbf{v}+h \mathbf{e}_{j}\right)-f(\mathbf{v})}{h}
$$

Theorem 1. (Schwarz's theorem, symmetry of partial derivatives) Under some generally satisfied conditions (continuity of n-th order partial derivatives) Schwarz's theorem states that it is possible to swap the order of differentiation.

$$
\partial_{x} \partial_{y} f(x, y)=\partial_{y} \partial_{x} f(x, y)
$$

Definition 2 (Linearization). A function $f: \mathbb{R}^{m} \rightarrow$ \mathbb{R} has a linearization g at \mathbf{x}_{0} given by

$$
g(\mathbf{x})=f\left(\mathbf{x}_{0}\right)+\sum_{i=1}^{m} \partial_{x_{i}} f\left(\mathbf{x}_{0}\right)\left(x_{i}-x_{i, 0}\right)
$$

if all partial derviatives are defined at \mathbf{x}_{0}.
Theorem 2 (Propagation of uncertanty). Given a measurement of m values in a vector $\mathbf{x} \in \mathbb{R}^{m}$ with values given in the form $x_{i}=\bar{x}_{i} \pm \sigma_{x_{i}}$, a linear approximation the error of a dependent variable y is computed with

$$
y=\bar{y} \pm \sigma_{y} \approx f(\overline{\mathbf{x}}) \pm \sqrt{\sum_{i=1}^{m}\left(\partial_{x_{i}} f(\overline{\mathbf{x}}) \sigma_{x_{i}}\right)^{2}}
$$

Definition 3 (Gradient vector). The gradient of a function $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{m}$ is a column vector ${ }^{1}$ containing the derivatives in each direction.

$$
\boldsymbol{\nabla} f(\mathbf{x})=\sum_{i=1}^{m} \partial_{x_{i}} f(\mathbf{x}) \mathbf{e}_{i}=\left(\begin{array}{c}
\partial_{x_{1}} f(\mathbf{x}) \\
\vdots \\
\partial_{x_{m}} f(\mathbf{x})
\end{array}\right)
$$

Definition 4 (Directional derivative). A function $f(\mathbf{x})$ has a directional derivative in direction \mathbf{r} (with $|\mathbf{r}|=1$) given by

$$
\frac{\partial f}{\partial \mathbf{r}}=\nabla \mathbf{r} f=\mathbf{r} \cdot \nabla f
$$

Theorem 3. The gradient vector always points towards the direction of steepest ascent.
Definition 5 (Jacobian Matrix). The Jacobian \mathbf{J}_{f} (sometimes written as $\left.\frac{\partial\left(f_{1}, \ldots f_{m}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}\right)$ of a function \mathbf{f} : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a matrix $\in \mathbb{R}^{n \times m}$ whose entry at the i th row and j-th column is given by $\left(\mathbf{J}_{f}\right)_{i, j}=\partial_{x_{j}} f_{i}$, so

$$
\mathbf{J}_{f}=\left(\begin{array}{ccc}
\partial_{x_{1}} f_{1} & \cdots & \partial_{x_{n}} f_{1} \\
\vdots & \ddots & \vdots \\
\partial_{x_{1}} f_{m} & \cdots & \partial_{x_{n}} f_{m}
\end{array}\right)=\left(\begin{array}{c}
\left(\boldsymbol{\nabla} f_{1}\right)^{t} \\
\vdots \\
\left(\nabla f_{m}\right)^{t}
\end{array}\right)
$$

Remark 1. In the scalar case ($m=1$) the Jacobian matrix is the transpose of the gradient vector.

Definition 6 (Hessian matrix). Given a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, the square matrix whose entry at the i-th row and j-th column is the second derivative of f first with respect to x_{j} and then to x_{i} is know as the Hessian matrix. $\left(\mathbf{H}_{f}\right)_{i, j}=\partial_{x_{i}} \partial_{x_{j}} f$ or

$$
\mathbf{H}_{f}=\left(\begin{array}{ccc}
\partial_{x_{1}} \partial_{x_{1}} f & \cdots & \partial_{x_{1}} \partial_{x_{m}} f \\
\vdots & \ddots & \vdots \\
\partial_{x_{m}} \partial_{x_{1}} f & \cdots & \partial_{x_{m}} \partial_{x_{m}} f
\end{array}\right)
$$

Because (almost always) the order of differentiation does not matter, it is a symmetric matrix.

[^0]
3 Methods for maximization and minimization problems

Method 1 (Find stationary points). Given a function $f: D \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}$, to find its maxima and minima we shall consider the points

- that are on the boundary of the domain ∂D,
- where the gradient ∇f is not defined,
- that are stationary, i.e. where $\boldsymbol{\nabla} f=\mathbf{0}$.

Method 2 (Determine the type of stationary point for 2 dimensions). Given a scalar function of two variables $f(x, y)$ and a stationary point \mathbf{x}_{s} (where $\nabla f\left(\mathbf{x}_{s}\right)=\mathbf{0}$), we define the discriminant

$$
\Delta=\partial_{x}^{2} f \partial_{y}^{2} f-\partial_{y} \partial_{x} f
$$

- if $\Delta>0$ then \mathbf{x}_{s} is an extrema, if $\partial_{x}^{2} f\left(\mathbf{x}_{s}\right)<0$ it is a maximum, whereas if $\partial_{x}^{2} f\left(\mathbf{x}_{s}\right)>0$ it is a minimum;
- if $\Delta<0$ then \mathbf{x}_{s} is a saddle point;
- if $\Delta=0$ we need to analyze further.

Remark 2. The previous method is obtained by studying the second directional derivative $\nabla_{\mathbf{r}} \nabla_{\mathbf{r}} f$ at the stationary point in direction of a vector $\mathbf{r}=$ $\mathbf{e}_{1} \cos (\alpha)+\mathbf{e}_{2} \sin (\alpha)$

Method 3 (Determine the type of stationary point in higher dimensions). Given a scalar function of two variables $f(x, y)$ and a stationary point \mathbf{x}_{s} (where $\boldsymbol{\nabla} f\left(\mathbf{x}_{s}\right)=\mathbf{0}$), we compute the Hessian matrix $\mathbf{H}_{f}\left(\mathbf{x}_{s}\right)$. Then we compute its eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$ and

- if all $\lambda_{i}>0$, the point is a minimum;
- if all $\lambda_{i}<0$, the point is a maximum;
- if there are both positive and negative eigenvalues, it is a saddle point.

In the other cases, when there are $\lambda_{i} \leq 0$ and/or $\lambda_{i} \geq 0$ further analysis is required.
Remark 3. Recall that to compute the eigenvalues of a matrix, one must solve the equation ($\mathbf{H}-$ $\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$. Which can be done by solving the characteristic polynomial $\operatorname{det}(\mathbf{H}-\lambda \mathbf{I})=0$ to obtain $\operatorname{dim}(\mathbf{H}) \lambda_{i}$, which when plugged back in result in a overdetermined system of equations.
Method 4 (Quickly find the eigenvalues of a 2×2 matrix). Let

$$
m=\frac{1}{2} \operatorname{tr} \mathbf{H}=\frac{a+d}{2}, \quad p=\operatorname{det} \mathbf{H}=a d-b c
$$

then $\lambda=m \pm \sqrt{m^{2}-p}$.

Figure 1: Intuition for the method of Lagrange multipliers. Extrema of a constrained function are where $\boldsymbol{\nabla} f$ is proportional to $\boldsymbol{\nabla} n$.

Method 5 (Search for a constrained extremum in 2 dimensions). Let $n(x, y)=0$ be a constraint in the search of the extrema of a function $f: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$. To find the extrema we look for points

- on the boundary $\mathbf{u} \in \partial D$ where $n(\mathbf{u})=0$;
- \mathbf{u} where the gradient either does not exist or is $\mathbf{0}$, and satisfy $n(\mathbf{u})=0$;
- that solve the system of equations

$$
\left\{\begin{array}{l}
\partial_{x} f(\mathbf{u}) \cdot \partial_{y} n(\mathbf{u})=\partial_{y} f(\mathbf{u}) \cdot \partial_{x} n(\mathbf{u}) \\
n(\mathbf{u})=0
\end{array}\right.
$$

Method 6 (Search for a constrained extremum in higher dimensions, method of Lagrange multipliers). We wish to find the extrema of $f: D \subseteq \mathbb{R}^{m} \rightarrow$ \mathbb{R} under $k<m$ constraints $n_{1}=0, \cdots, n_{k}=0$. To find the extrema we consider the following points:

- Points on the boundary $\mathbf{u} \in \partial D$ that satisfy $n_{i}(\mathbf{u})=0$ for all $1 \leq i \leq k$,
- Points $\mathbf{u} \in D$ where either
- any of $\boldsymbol{\nabla} f, \nabla n_{1}, \ldots, \nabla n_{k}$ do not exist, or
$-\boldsymbol{\nabla} n_{1}, \ldots, \boldsymbol{\nabla} n_{k}$ are linearly dependent,
and that satisfy $0=n_{1}(\mathbf{u})=\ldots=n_{k}(\mathbf{u})$.
- Points that solve the system of $m+k$ equations

$$
\begin{cases}\nabla f(\mathbf{u})=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{\nabla} n_{i}(\mathbf{u}) & (m \text {-dimensional) } \\ n_{i}(\mathbf{u})=0 & \text { for } 1 \leq i \leq k\end{cases}
$$

The λ values are known as Lagrange multipliers. The same calculation can be written more

Figure 2: Double integral.
compactly by defining the $m+k$ dimensional Lagrangian

$$
\mathcal{L}(\mathbf{u}, \boldsymbol{\lambda})=f(\mathbf{u})-\sum_{i=0}^{k} \lambda_{i} n_{i}(\mathbf{u})
$$

where $\boldsymbol{\lambda}=\lambda_{1}, \ldots, \lambda_{k}$ and then solving $\boldsymbol{\nabla} \mathcal{L}(\mathbf{u}, \boldsymbol{\lambda})=\mathbf{0}$. This is generally used in numerical computations and not very useful by hand.

4 Integration of vector values scalar functions

Theorem 4 (Change the order of integration for double integrals). For a double integral over a region S (see Fig. 2) we need to compute

$$
\iint_{S} f(x, y) d s=\int_{x_{1}}^{x_{2}} \int_{y_{1}(x)}^{y_{2}(x)} f(x, y) d y d x
$$

If $y_{1}(x)$ and $y_{2}(x)$ are bijective we can swap the order of integration by finding the inverse functions $x_{1}(y)$ and $x_{2}(y)$. If they are not bijective (like in Fig. 2), the region must be split into smaller parts. If the region is a rectangle it is always possible to change the order of integration.

Theorem 5 (Transformation of coordinates in 2 dimensions). Given two "nice" functions $x(u, v)$ and $y(u, v)$, that means are a bijection from S to S^{\prime} with continuous partial derivatives and nonzero Jacobian determinant $\left|\mathbf{J}_{f}\right|=\partial_{u} x \partial_{v} y-\partial_{v} x \partial_{u} y$, which transform the coordinate system. Then

$$
\iint_{S} f(x, y) d s=\iint_{S^{\prime}} f(x(u, v), y(u, v))\left|\mathbf{J}_{f}\right| d s
$$

Theorem 6 (Transformation of coordinates). The generalization of theorem 5 is quite simple. For an n-integral of a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ over a region

	Volume $d v$	Surface $d \mathbf{s}$
Cartesian	-	$d x d y$
Polar	-	$r d r d \phi$
Curvilinear	-	$\left\|\mathbf{J}_{f}\right\| d u d v$
Cartesian	$d x d y d z$	$\hat{\mathbf{z}} d x d y$
Cylindrical	$r d r d \phi d z$	$\hat{\mathbf{z}} r d r d \phi$
		$\hat{\boldsymbol{\phi}} d r d z$
		$\hat{\mathbf{r}} r d \phi d z$
Spherical	$r^{2} \sin \theta d r d \theta d \phi$	$\hat{\mathbf{r}} r^{2} \sin \theta d \theta d \phi$
Curvilinear	$\left\|\mathbf{J}_{f}\right\| d u d v d w$	-

Table 1: Differential elements for integration.
B, we let $\mathbf{x}(\mathbf{u})$ be "nice" functions that transform the coordinate system. Then as before

$$
\int_{B} f(\mathbf{x}) d s=\int_{B^{\prime}} f(\mathbf{x}(\mathbf{u}))\left|\mathbf{J}_{f}\right| d s
$$

5 Derivatives of curves

License

This work is licensed under a "CC BY-NC-SA 4.0" license.

[^0]: ${ }^{1}$ In matrix notation it is also often defined as row vector to avoid having to do some transpositions in the Jacobian matrix and dot products in directional derivatives

