1 Complex Numbers

Definition 1 (Complex Unit and Zero).

$$j \stackrel{\text{def.}}{=} +\sqrt{-1} \iff j^2 = -1$$

 $1 = (1,0) \quad 0 = (0,0) \quad j = (0,1)$

Definition 2 (Negation and Sum). Let $z, w \in \mathbb{C}$

$$-z = (-z_1, -z_2)$$
 $z \oplus w = (z_1 + w_1, z_2 + w_2)$

Lemma 1. The complex numbers form an additive group. Let $z, w, v \in \mathbb{C}$, we have

Identity
$$z + 0 = z$$

Commutativity
$$z + w = w + z$$

Associativity z + (w + v) = (z + w) + v

Inverse property
$$z + (-z) = (-z) + z = 0$$

Definition 3 (Multiplication). Let $z, w \in \mathbb{C}$

$$(a,b) \odot (c,d) = (ac - bd, ad + bc)$$

Lemma 2. The complex numbers form a commutative ring. Let $z, w, v \in \mathbb{C}$

Identity $1 \cdot z = z$

Commutativity $z \cdot w = w \cdot z$

Associativity
$$z(wv) = (zw)v$$

Distributivity z(w+v) = zw + zv

Definition 4 (Real and imaginary part and conjugation). Let z = a + jb. The *real* part of z is $\operatorname{Re}(z) = a$, similarly the *imaginary* part is $\operatorname{Im}(z) = b$. We can thus define the *complex conjugate* \overline{z} of z to be

$$z = \operatorname{Re}(z) + j \operatorname{Im}(z)$$
 $\overline{z} = \operatorname{Re}(z) - j \operatorname{Im}(z)$

Definition 5 (Absolute value). If z = a + jb we define the *absolute value* $|z| = \sqrt{a^2 + b^2}$

Lemma 3 (Properties of absolute value). Let $z, w \in \mathbb{C}$. We have $z\overline{z} = |z|^2$ and as a consequence $|zw| = |z| \cdot |w|$ and $|\overline{z}| = |z|$. In addition we have the inequalities

$$\begin{aligned} -|z| &\leq \operatorname{Re}(z) \leq |z| \qquad |z| \leq |\operatorname{Re}(z)| + |\operatorname{Im}(z)| \\ -|z| &\leq \operatorname{Im}(z) \leq |z| \qquad |z+w| \leq |z| + |w| \end{aligned}$$

The last one is the *triangle inequality*. Notice that $|z| \in \mathbb{R}_0^+$.

Definition 6 (Reciprocal and quotients). If z is a nonzero complex number we define the *reciprocal* z^{-1} of z to be $z^{-1} = |z|^{-2}\overline{z}$. If z = 0 the reciprocal 0^{-1} is left undefined. It is now possible to define $z/w = zw^{-1}$ with $z, w \in \mathbb{C}$ and $w \neq 0$.

Lemma 4 (Properties of conjugation). Let $z, w \in \mathbb{C}$. $\overline{z} = z$ iff $z \in \mathbb{R}$ and $\overline{z} = \overline{w}$ iff z = w. Furthermore:

$$\overline{\overline{z}} = z \qquad \overline{z \pm w} = \overline{z} \pm \overline{w} \quad \operatorname{Re}(z) = (z + \overline{z})/2$$
$$\overline{z \cdot w} = \overline{z} \cdot \overline{w} \qquad \overline{z/w} = \overline{z}/\overline{w} \qquad \operatorname{Im}(z) = (z - \overline{z})/2j$$

Definition 7 (Argument and polar notation). An alternative representation of a complex number z = a + jb is its *polar form* $z = r \angle \phi$, where r = |z| and $\phi = \arg z$.

$$a = r \cos \phi$$
 $b = r \sin \phi$ $r = \sqrt{z\overline{z}}$

For a = 0 we define $\phi = \lim_{a \to 0} \arctan(b/a) = \pm \pi/2$ and otherwise

$$\phi = \arg(z) = \begin{cases} \arctan(b/a) & a > 0\\ \arctan(b/a) + \pi & a < 0 \end{cases}$$
$$= \begin{cases} \arccos(a/r) & b \ge 0\\ -\arccos(b/r) & b < 0 \end{cases}$$

Another variant of this notation is

$$z = r \operatorname{cjs} \phi = r(\cos \phi + j \sin \phi)$$

Lemma 5 (Arithmetic in polar notation). Let $z, w \in \mathbb{C}$ then the product zw has

$$|zw| = |z| \cdot |w|$$
 $\arg(zw) = \arg z + \arg w$

Similarly the quotient
$$z/w$$
 follows

|z/w| = |z|/|w| $\arg(z/w) = \arg z - \arg w$

Lastly from the product we see that for $k\in\mathbb{N}$

$$|z^k| = |z|^k \quad \arg z^k = k \arg z$$

Theorem 1 (De Moivre's formula). Let $n \in \mathbb{N}$

 $\left(\cos\phi + j\sin\phi\right)^n = \cos(n\phi) + j\sin(n\phi)$

As a consequence with the binomial formula $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^n$, recalling that $\binom{n}{k} = n!/(k!(n-k)!)$ (Pascal's triangle), we have

$$\sin(nx) = \sum_{k=0}^{n} \binom{n}{k} (\cos x)^{k} (\sin x)^{n-k} \sin \frac{(n-k)\pi}{2}$$
$$\cos(nx) = \sum_{k=0}^{n} \binom{n}{k} (\cos x)^{k} (\sin x)^{n-k} \cos \frac{(n-k)\pi}{2}$$

2 Complex valued functions

Definition 8 (Function in \mathbb{C}). Let $f : \mathbb{D} \to \mathbb{W}$ with both $\mathbb{D}, \mathbb{W} \subseteq \mathbb{C}$ that maps $z = (a+jb) \mapsto w = (u+jv)$, then $u = \operatorname{Re} f(z)$ and $v = \operatorname{Im} f(z)$. If f is a bijection with inverse f^{-1} , then $a = \operatorname{Re} f^{-1}(w), b = \operatorname{Im} f^{-1}(w)$.

Definition 9 (Differentiation in \mathbb{C}). Let f be a function of z and $h \in \mathbb{C}$. We have the limit

$$\lim_{|h| \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = f'(z_0)$$

to define the *derivative* of f at the point z_0 .

Lemma 6 (Local dilation and rotation). Let f be a differentiable function in \mathbb{C} . If $f'(z) \neq 0$ everywhere, then f is a conformal map (i.e. preserves angles) with local dilation of |f'(z)| and rotation of $\arg f'(z)$

Definition 10 (Linear function).

Definition 11 (Monomial and *n*-th root). Let $w = z^n$ be a monomial of degree $n \in \mathbb{N}$. Using the polar notation we see that $(r \angle \phi)^n = r^n \angle (n\phi)$. Because $r \angle \phi = r \angle (\phi + 2\pi)$ there cannot be a bijection between w and z, if we want to define an inverse function $z = \sqrt[n]{w}$ we get many values with the form

$$z_k = \sqrt[n]{r} \angle (\phi + k2\pi)/n \qquad 0 \le k < n$$

This fact implies that in general for $z, u \in \mathbb{C}$ $\sqrt[n]{zu} \neq \sqrt[n]{z} \sqrt[n]{u}$, as the relationship holds only for *some* values of $\sqrt[n]{z}$ and $\sqrt[n]{u}$.

Theorem 2 (Roots of a polynomial). Every complex polynomial of degree n has always n roots in \mathbb{C} .

Theorem 3. Every complex polynomial of degree n with coefficients can be *uniquely* rewritten in term of its roots.

$$P(z) = \sum_{k=0}^{n} a_k z^k = a_n \prod_{k=0}^{n} (z - z_k)$$

Theorem 4 (Polynomial with real coefficients). The roots of a polynomial with real coefficients of degree n, always come in conjugate complex pairs of r and \overline{r} . That is because

$$(z-r)(z-\overline{r}) = z^2 - 2\operatorname{Re}(r)z + |z|^2$$

Lemma 7. From the previous theorem follows that a polynomial with real coefficients of *odd* degree, has *always* at least one real solution because $r \in \mathbb{R} \iff r = \overline{r}$.

Theorem 5. All roots of a polynomial $p(z) = \sum_{k=0}^{n} a_k z^k$ are inside of the open disk centered at the origin of radius $\sum_{k=0}^{n} |a_k/a_n|$.

Theorem 6 (Cardano's cubic formula).

Definition 12 (Exponential). If z is a complex number we define the exponential function e^z by its convergent power series

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Theorem 7 (Euler's formula). By setting the argument of the exponential function to jt for some $t \in \mathbb{R}$ we can reorder the power series to be a sum of the power series of j sin and cos, and thus define

$$e^{jt} = \cos t + j\sin t = \operatorname{cjs} t = 1 \angle t$$

Lemma 8 (Rules for exponents). Let $a, b \in \mathbb{C}$ and $k \in \mathbb{Z}$, we can show that

$$e^{a}e^{b} = e^{a+b}$$
 $e^{a}/e^{b} = e^{a-b}$ $(e^{a})^{k} = e^{ak}$

Definition 13 (Trigonometric functions). When z is a complex number we define

$$\cos z = \frac{e^{jz} + e^{-jz}}{2}$$
 $\sin z = \frac{e^{jz} - e^{-jz}}{2j}$

like the (real) hyperbolic trigonometric functions

$$\cosh z = (e^z + e^{-z})/2 \quad \sinh z = (e^z - e^{-z})/2$$

Notice that the sinus function is point symmetric to $\pi/2$, because $\sin(\pi/2 - z) = \sin(\pi/2 + z)$.

Lemma 9 (Some trigonometric identities). Let $x, a, b \in \mathbb{R}$ and $\alpha, \beta \in \mathbb{C}$

$$\sin(x + \pi/2) = \cos(x) \qquad \cos(x - \pi/2) = \sin(x)$$

$$\sinh(jx) = j\sin(x) \qquad \cosh(jx) = \cos(x)$$

$$\sin(a + jb) = \sin(a)\cosh(b) + j\cos(a)\sinh(b)$$

$$\cos(a + jb) = \cos(a)\cosh(b) + j\sin(a)\sinh(b)$$

$$2\sin(\alpha)\sin(\beta) = \cos(\alpha - \beta) - \cos(\alpha + \beta)$$

$$2\sin(\alpha)\cos(\beta) = \sin(\alpha - \beta) + \sin(\alpha + \beta)$$

Lemma 10 (Superposition of sinuses). Let $s(t) = A\sin(\omega t + \varphi)$ be a sinusoidal wave. We can rewrite s in complex form with

$$s(t) = \operatorname{Im}\left(Ae^{j(\omega t + \varphi)}\right) = \operatorname{Im}Ae^{j\varphi} \cdot e^{j\omega t}$$

If we now wish to sum N sinusoids with the same frequency ω , the resulting sinusoid $A\sin(\omega t + \varphi)$ has

$$A = \left| \sum_{n=1}^{N} A_n e^{j\varphi_n} \right| \quad \varphi = \arg \sum_{n=1}^{N} A_n e^{j\varphi_n}$$

Definition 14 (Logarithm). Because $w = e^z$ defined from $\mathbb{C} \to \mathbb{C}$ is not a bijection $(e^{z+2\pi j} = e^z)$, unless we restrict the imaginary part of the domain to $(\pi, \pi]$, we get only an equivalence relationship because

$$\ln\left[|w|e^{j(\phi+k2\pi)}\right] = \ln|w| + j(\phi+k2\pi)$$

where $k \in \mathbb{Z}$. Similarly for $z, w \in \mathbb{C}$

$$\ln(w) \equiv z \qquad (\mod 2\pi j)$$

$$\ln(w^k) \equiv k \ln(w) \qquad (\mod 2\pi j)$$

$$\ln(zw) \equiv \ln(z) + \ln(w) \qquad (\mod 2\pi j)$$

$$\ln(z/w) \equiv \ln(z) - \ln(w) \qquad \pmod{2\pi j}$$

Lemma 11 (General exponentiation). So far we have only exponentiation for an exponent $k \in \mathbb{Z}$, by adding $m \in \mathbb{N}$ we can define the quotient $k/m \in \mathbb{Q}$ that together with $z \in \mathbb{C}$ gives

$$z^{k/m} = e^{\ln(z)k/m}$$

= exp ((ln|z| + j(arg z + 2\pi n))k/m)
= exp (ln|z| · k/m) exp((arg z + 2\pi n)jk/m)
= |z|^{k/m} exp ((arg z + 2\pi n)jk/m) = \sqrt[m]{z^k}

like in the reals, except that we have m values because of the m-th root. If we let $w \in \mathbb{C}$ the expression z^w cannot be equal to an unique value because

$$z^{w} = e^{w \ln z} = \exp\left(w(\ln|z| + j \arg z + 2\pi nj)\right)$$
$$= e^{w(\ln|z| + j \arg z)} e^{w2\pi nj}$$

instead it is said to be *multivalued*. This means that there are no general exponentiation rules.

3 Fourier Series

Definition 15 (Real trigonometric polynomial). Let $\omega = 2\pi/T \in \mathbb{R}$ and A_n, B_n be sequences in \mathbb{R} . We define a *real trigonometric polynomial* of degree N to be

$$\tau_N(t) = \frac{A_0}{2} + \sum_{n=1}^N A_n \cos(n\omega t) + B_n \sin(n\omega t)$$

Lemma 12 (Orthogonality of the basis functions). Let $m, n \in \mathbb{N}_0$

$$\int_{0}^{T} \cos(m\omega t) \cos(n\omega t) = \begin{cases} T & m = n = 0\\ T/2 & m = n > 0\\ 0 & m \neq n \end{cases}$$
$$\int_{0}^{T} \sin(m\omega t) \sin(n\omega t) = \begin{cases} T/2 & m = n \land n \neq 0\\ 0 & m \neq n\\ 0 & m = 0 \lor n = 0 \end{cases}$$
$$\int_{0}^{T} \cos(m\omega t) \sin(n\omega t) = 0$$

Definition 16. We denote with Ω the space of real valued, *T*-periodic, piecewise continuous functions, that have only a finite number of discontinuities, in which both the right and left limit exist, within the interval [0, T).

Theorem 8 (Fourier coefficients). For any $f \in \Omega$ we can now define the *Fourier coefficients*

$$a_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega t) \,\mathrm{d}t \qquad a_0 = \frac{2}{T} \int_0^T f(t) \,\mathrm{d}t$$
$$b_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega t) \,\mathrm{d}t \qquad b_0 = 0$$

Worth noting are the special cases when n = 0.

Definition 17 (Fourier Polynomial). We can now use the Fourier coefficients as sequences for a trigonometric polynomial to obtain a *Fourier Polynomial*

$$S_N(t) = \frac{a_0}{2} + \sum_{n=1}^N a_n \cos(n\omega t) + b_n \sin(n\omega t)$$

Lemma 13. A trigonometric polynomial has the smallest distance (by the L^2 metric) from a function $f \in \Omega$, iff $A_n = a_n$ and $B_n = b_n$, in other words iff it is a Fourier Polynomial.

Definition 18 (Fourier Series). We can finally define the *Fourier Series* to be the infinite Fourier Polynomial, by letting $N \to \infty$

$$S(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$

Theorem 9 (Fourier coefficients of even and odd functions). Recall that a function is said to be *even* if f(-x) = f(x) or *odd* if f(-x) = -f(x). We can show that if a function is

• even, then $b_n = 0$ for all n, and

$$a_n = \frac{4}{T} \int_0^{T/2} f(t) \cos(n\omega t) \,\mathrm{d}t$$

• odd, then $a_n = 0$ for all n, and

$$b_n = \frac{4}{T} \int_0^{T/2} f(t) \sin(n\omega t) \,\mathrm{d}t$$

Lemma 14 (Linearity of Fourier coefficients). Recall that linearity means $L(\mu x + \lambda y) = \mu L(x) + \lambda L(y)$. We then let $f, g \in \Omega$ be functions with Fourier series and $h = \mu f + \lambda g$ where $\mu, \lambda \in \mathbb{R}$ are constants. By denoting with $a_n^{(f)}$ the Fourier coefficient a_n of the function f, and similarly with $b_n^{(f)}$, it is easily shown that

$$a_n^{(h)} = \mu a_n^{(f)} + \lambda a_n^{(g)} \qquad b_n^{(h)} = \mu b_n^{(f)} + \lambda b_n^{(g)}$$

Lemma 15 (Fourier coefficients after time dilation). Let $f \in \Omega$ be a function with a Fourier Series and g(t) = f(rt) with $0 \neq r \in \mathbb{R}$. It follows that $a_n^{(g)} = a_n^{(f)}$ and $b_n^{(g)} = \operatorname{sgn}(r) \cdot b_n^{(f)}$.

Lemma 16 (Fourier coefficients after time translation). Let $f \in \Omega$ be a function with a Fourier Series and $g(t) = f(t + \tau)$ with $\tau \in \mathbb{R}$. It follows that

$$\begin{aligned} a_n^{(g)} &= \cos(n\omega\tau) \cdot a_n^{(f)} + \sin(n\omega\tau) \cdot b_n^{(f)} & n \ge 0 \\ b_n^{(g)} &= -\sin(n\omega\tau) \cdot a_n^{(f)} + \cos(n\omega\tau) \cdot b_n^{(f)} & n > 0 \end{aligned}$$

Theorem 10 (Fourier theorem). For any $f \in \Omega$ the Fourier series of f converges in L^2 metric to f.

$$\lim_{N \to \infty} \left\| \frac{a_0}{2} + \sum_{n=0}^N a_n \cos(n\omega t) + b_n \sin(n\omega t) - f(t) \right\| = 0$$

Theorem 11 (Plancherel Parselval theorem). Let $f \in \Omega$ with a Fourier Series with coefficients a_n and b_n .

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right) \le \frac{2}{T} \int_0^T |f(t)|^2 \, \mathrm{d}t = \|f\|^2$$

Theorem 12. Both sequences a_n, b_n for the Fourier coefficients of a function $f \in \Omega$ converge to zero.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2}{T} \int_0^T f(t) \cos(n\omega t) \, \mathrm{d}t = 0$$
$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{2}{T} \int_0^T f(t) \sin(n\omega t) \, \mathrm{d}t = 0$$

Theorem 13 (Rate of convergence of Fourier coefficients). If f is a T-periodic, (m-2) times differentiable, continuous function. And if its (m-1)-th derivative is pieceweise monotonous and $\in \Omega$, then there exists a constant $c \in \mathbb{R}$ such that

$$|a_n| \le \frac{c}{n^m} \qquad |b_n| \le \frac{c}{n^m} \qquad m, n \in \mathbb{N}$$

Theorem 14 (Integration and differentiation of the Fourier series). It is possible to show from the previous theorem (and others before) that when $m \ge 2$ the Fouriers converges *uniformly*. This means that it is possible to integrate or differentiate the series term by term.

$$f'(t) = \sum_{n=1}^{\infty} b_n n\omega \cos(n\omega t) - a_n n\omega \sin(n\omega t)$$

and

$$\int_{0}^{t} f(\tau) d\tau = \left(\sum_{n=1}^{\infty} \frac{b_n}{n\omega}\right) + \frac{a_0}{2}t + \left(\sum_{n=1}^{\infty} \frac{a_n}{n\omega}\sin(n\omega t) - \frac{b_n}{n\omega}\cos(n\omega t)\right)$$

Theorem 15 (Dirichlet pointwise convergence). Let $f \in \Omega$, then it is known that its Fourier series converges to

$$\lim_{\epsilon \to 0} \frac{f(t-\epsilon) + f(t+\epsilon)}{2}$$

for every t, where the left and right derivative $f'(t-\epsilon)$, $f'(t+\epsilon)$, with $\epsilon \to 0$, exist.

In the special case where f is continuous at t, and the derivatives exist, there the Fourier series converges exactly to f(t), i.e. the value of the function at t.

Definition 19 (Complex representation of the Fourier coefficients). By letting $n \in \mathbb{Z}$ and

$$c_n = \overline{c_{-n}} = \frac{a_n - jb_n}{2} = \frac{1}{T} \int_0^T f(t)e^{-jn\omega t} \,\mathrm{d}t$$

using a notational trick for negative indices. We can compactly write a Fourier series or polynomial as

$$S(t) = \sum_{n = -\infty}^{\infty} c_n e^{jn\omega t}$$

Theorem 16 (Complex Fourier coefficients of even and odd functions). By the definition of c_n and the previous similar theorem for the real coefficients, it is clear that when a function $f \in \Omega$ is *even*, then $\text{Im}(c_k) = 0$, whereas when f is *odd* $\text{Re}(c_k) = 0$ ($k \in \mathbb{Z}$).

Theorem 17 (Complex Fourier coefficients after time translation). Similarly to the previous theorem, we can now compactly write that if $f \in \Omega$ has a Fourier series with coefficients $c_k^{(f)}$, and $g(t) = f(t + \tau)$, then

$$c_k^{(g)} = e^{jk\omega\tau} c_k^{(f)} \qquad k \in \mathbb{Z}$$

4 License

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

