1 Complex Numbers

Definition 1 (Complex Unit and Zero).

$$
\begin{gathered}
j \stackrel{\text { def. }}{=}+\sqrt{-1} \Longleftrightarrow j^{2}=-1 \\
1=(1,0) \quad 0=(0,0) \quad j=(0,1)
\end{gathered}
$$

Definition 2 (Negation and Sum). Let $z, w \in \mathbb{C}$

$$
-z=\left(-z_{1},-z_{2}\right) \quad z \oplus w=\left(z_{1}+w_{1}, z_{2}+w_{2}\right)
$$

Lemma 1. The complex numbers form an additive group. Let $z, w, v \in \mathbb{C}$, we have

$$
\text { Identity } z+0=z
$$

Commutativity $z+w=w+z$

$$
\text { Associativity } z+(w+v)=(z+w)+v
$$

Inverse property $z+(-z)=(-z)+z=0$
Definition 3 (Multiplication). Let $z, w \in \mathbb{C}$

$$
(a, b) \odot(c, d)=(a c-b d, a d+b c)
$$

Lemma 2. The complex numbers form a commutative ring. Let $z, w, v \in \mathbb{C}$

$$
\text { Identity } 1 \cdot z=z
$$

Commutativity $z \cdot w=w \cdot z$

$$
\begin{aligned}
& \text { Associativity } z(w v)=(z w) v \\
& \text { Distributivity } z(w+v)=z w+z v
\end{aligned}
$$

Definition 4 (Real and imaginary part and conjugation). Let $z=a+j b$. The real part of z is $\operatorname{Re}(z)=a$, similarly the imaginary part is $\operatorname{Im}(z)=b$. We can thus define the complex conjugate \bar{z} of z to be

$$
z=\operatorname{Re}(z)+j \operatorname{Im}(z) \quad \bar{z}=\operatorname{Re}(z)-j \operatorname{Im}(z)
$$

Definition 5 (Absolute value). If $z=a+j b$ we define the absolute value $|z|=\sqrt{a^{2}+b^{2}}$

Lemma 3 (Properties of absolute value). Let $z, w \in \mathbb{C}$. We have $z \bar{z}=|z|^{2}$ and as a consequence $|z w|=|z| \cdot|w|$ and $|\bar{z}|=|z|$. In addition we have the inequalities

$$
\begin{aligned}
-|z| & \leq \operatorname{Re}(z) & \leq|z| & |z| & \leq|\operatorname{Re}(z)|+|\operatorname{Im}(z)| \\
-|z| & \leq \operatorname{Im}(z) & \leq|z| & |z+w| & \leq|z|+|w|
\end{aligned}
$$

The last one is the triangle inequality. Notice that $|z| \in \mathbb{R}_{0}^{+}$.
Definition 6 (Reciprocal and quotients). If z is a nonzero complex number we define the reciprocal z^{-1} of z to be $z^{-1}=|z|^{-2} \bar{z}$. If $z=0$ the reciprocal 0^{-1} is left undefined. It is now possible to define $z / w=z w^{-1}$ with $z, w \in \mathbb{C}$ and $w \neq 0$.
Lemma 4 (Properties of conjugation). Let $z, w \in \mathbb{C}$. $\bar{z}=z$ iff $z \in \mathbb{R}$ and $\bar{z}=\bar{w}$ iff $z=w$. Furthermore:

$$
\begin{array}{rlrlrl}
\overline{\bar{z}} & =z & \overline{z \pm w} & =\bar{z} \pm \bar{w} & & \operatorname{Re}(z)=(z+\bar{z}) / 2 \\
\overline{z \cdot w} & =\bar{z} \cdot \bar{w} & & \overline{z / w} & =\bar{z} / \bar{w} & \\
\operatorname{Im}(z) & =(z-\bar{z}) / 2 j
\end{array}
$$

Definition 7 (Argument and polar notation). An alternative representation of a complex number $z=$ $a+j b$ is its polar form $z=r \angle \phi$, where $r=|z|$ and $\phi=\arg z$.

$$
a=r \cos \phi \quad b=r \sin \phi \quad r=\sqrt{z \bar{z}}
$$

For $a=0$ we define $\phi=\lim _{a \rightarrow 0} \arctan (b / a)= \pm \pi / 2$ and otherwise

$$
\begin{aligned}
\phi=\arg (z) & = \begin{cases}\arctan (b / a) & a>0 \\
\arctan (b / a)+\pi & a<0\end{cases} \\
& = \begin{cases}\arccos (a / r) & b \geq 0 \\
-\arccos (b / r) & b<0\end{cases}
\end{aligned}
$$

Another variant of this notation is

$$
z=r \operatorname{cjs} \phi=r(\cos \phi+j \sin \phi)
$$

Lemma 5 (Arithmetic in polar notation). Let $z, w \in$ \mathbb{C} then the product $z w$ has

$$
|z w|=|z| \cdot|w| \quad \arg (z w)=\arg z+\arg w
$$

Similarly the quotient z / w follows

$$
|z / w|=|z| /|w| \quad \arg (z / w)=\arg z-\arg w
$$

Lastly from the product we see that for $k \in \mathbb{N}$

$$
\left|z^{k}\right|=|z|^{k} \quad \arg z^{k}=k \arg z
$$

Theorem 1 (De Moivre's formula). Let $n \in \mathbb{N}$

$$
(\cos \phi+j \sin \phi)^{n}=\cos (n \phi)+j \sin (n \phi)
$$

As a consequence with the binomial formula $(a+b)^{n}=$ $\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{n}$, recalling that $\binom{n}{k}=n!/(k!(n-k)!)$ (Pascal's triangle), we have

$$
\begin{aligned}
& \sin (n x)=\sum_{k=0}^{n}\binom{n}{k}(\cos x)^{k}(\sin x)^{n-k} \sin \frac{(n-k) \pi}{2} \\
& \cos (n x)=\sum_{k=0}^{n}\binom{n}{k}(\cos x)^{k}(\sin x)^{n-k} \cos \frac{(n-k) \pi}{2}
\end{aligned}
$$

2 Complex valued functions

Definition 8 (Function in \mathbb{C}). Let $f: \mathbb{D} \rightarrow \mathbb{W}$ with both $\mathbb{D}, \mathbb{W} \subseteq \mathbb{C}$ that maps $z=(a+j b) \mapsto w=(u+j v)$, then $u=\operatorname{Re} f(z)$ and $v=\operatorname{Im} f(z)$. If f is a bijection with inverse f^{-1}, then $a=\operatorname{Re} f^{-1}(w), b=\operatorname{Im} f^{-1}(w)$.

Definition 9 (Differentiation in \mathbb{C}). Let f be a function of z and $h \in \mathbb{C}$. We have the limit

$$
\lim _{|h| \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}=f^{\prime}\left(z_{0}\right)
$$

to define the derivative of f at the point z_{0}.
Lemma 6 (Local dilation and rotation). Let f be a differentiable function in \mathbb{C}. If $f^{\prime}(z) \neq 0$ everywhere, then f is a conformal map (i.e. preserves angles) with local dilation of $\left|f^{\prime}(z)\right|$ and rotation of $\arg f^{\prime}(z)$

Definition 10 (Linear function).

Definition 11 (Monomial and n-th root). Let $w=z^{n}$ be a monomial of degree $n \in \mathbb{N}$. Using the polar notation we see that $(r \angle \phi)^{n}=r^{n} \angle(n \phi)$. Because $r \angle \phi=r \angle(\phi+2 \pi)$ there cannot be a bijection between w and z, if we want to define an inverse function $z=\sqrt[n]{w}$ we get many values with the form

$$
z_{k}=\sqrt[n]{r} \angle(\phi+k 2 \pi) / n \quad 0 \leq k<n
$$

This fact implies that in general for $z, u \in \mathbb{C} \sqrt[n]{z u} \neq$ $\sqrt[n]{z} \sqrt[n]{u}$, as the relationship holds only for some values of $\sqrt[n]{z}$ and $\sqrt[n]{u}$.
Theorem 2 (Roots of a polynomial). Every complex polynomial of degree n has always n roots in \mathbb{C}.

Theorem 3. Every complex polynomial of degree n with coefficients can be uniquely rewritten in term of its roots.

$$
P(z)=\sum_{k=0}^{n} a_{k} z^{k}=a_{n} \prod_{k=0}^{n}\left(z-z_{k}\right)
$$

Theorem 4 (Polynomal with real coefficients). The roots of a polynomial with real coefficients of degree n, always come in conjugate complex pairs of r and \bar{r}. That is because

$$
(z-r)(z-\bar{r})=z^{2}-2 \operatorname{Re}(r) z+|z|^{2}
$$

Lemma 7. From the previous theorem follows that a polynomial with real coefficients of odd degree, has always at least one real solution because $r \in \mathbb{R} \Longleftrightarrow r=$ \bar{r}.

Theorem 5. All roots of a polynomial $p(z)=$ $\sum_{k=0}^{n} a_{k} z^{k}$ are inside of the open disk centered at the origin of radius $\sum_{k=0}^{n}\left|a_{k} / a_{n}\right|$.
Theorem 6 (Cardano's cubic formula).
Definition 12 (Exponential). If z is a complex number we define the exponential function e^{z} by its convergent power series

$$
e^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

Theorem 7 (Euler's formula). By setting the argument of the exponential function to $j t$ for some $t \in \mathbb{R}$ we can reorder the power series to be a sum of the power series of $j \sin$ and cos, and thus define

$$
e^{j t}=\cos t+j \sin t=\operatorname{cjs} t=1 \angle t
$$

Lemma 8 (Rules for exponents). Let $a, b \in \mathbb{C}$ and $k \in \mathbb{Z}$, we can show that

$$
e^{a} e^{b}=e^{a+b} \quad e^{a} / e^{b}=e^{a-b} \quad\left(e^{a}\right)^{k}=e^{a k}
$$

Definition 13 (Trigonometric functions). When z is a complex number we define

$$
\cos z=\frac{e^{j z}+e^{-j z}}{2} \quad \sin z=\frac{e^{j z}-e^{-j z}}{2 j}
$$

like the (real) hyperbolic trigonometric functions

$$
\cosh z=\left(e^{z}+e^{-z}\right) / 2 \quad \sinh z=\left(e^{z}-e^{-z}\right) / 2
$$

Notice that the sinus function is point symmetric to $\pi / 2$, because $\sin (\pi / 2-z)=\sin (\pi / 2+z)$.
Lemma 9 (Some trigonometric identities). Let $x, a, b \in \mathbb{R}$ and $\alpha, \beta \in \mathbb{C}$

$$
\begin{aligned}
\sin (x+\pi / 2) & =\cos (x) \quad \cos (x-\pi / 2)=\sin (x) \\
\sinh (j x) & =j \sin (x) \quad \cosh (j x)=\cos (x) \\
\sin (a+j b) & =\sin (a) \cosh (b)+j \cos (a) \sinh (b) \\
\cos (a+j b) & =\cos (a) \cosh (b)+j \sin (a) \sinh (b) \\
2 \sin (\alpha) \sin (\beta) & =\cos (\alpha-\beta)-\cos (\alpha+\beta) \\
2 \sin (\alpha) \cos (\beta) & =\sin (\alpha-\beta)+\sin (\alpha+\beta)
\end{aligned}
$$

Lemma 10 (Superposition of sinuses). Let $s(t)=$ $A \sin (\omega t+\varphi)$ be a sinusoidal wave. We can rewrite s in complex form with

$$
s(t)=\operatorname{Im}\left(A e^{j(\omega t+\varphi)}\right)=\operatorname{Im} A e^{j \varphi} \cdot e^{j \omega t}
$$

If we now wish to sum N sinusoids with the same frequency ω, the resulting sinusoid $A \sin (\omega t+\varphi)$ has

$$
A=\left|\sum_{n=1}^{N} A_{n} e^{j \varphi_{n}}\right| \quad \varphi=\arg \sum_{n=1}^{N} A_{n} e^{j \varphi_{n}}
$$

Definition 14 (Logarithm). Because $w=e^{z}$ defined from $\mathbb{C} \rightarrow \mathbb{C}$ is not a bijection $\left(e^{z+2 \pi j}=e^{z}\right)$, unless we restrict the imaginary part of the domain to $(\pi, \pi]$, we get only an equivalence relationship because

$$
\ln \left[|w| e^{j(\phi+k 2 \pi)}\right]=\ln |w|+j(\phi+k 2 \pi)
$$

where $k \in \mathbb{Z}$. Similarly for $z, w \in \mathbb{C}$

$$
\begin{array}{rlrl}
\ln (w) & \equiv z & & (\bmod 2 \pi j) \\
\ln \left(w^{k}\right) & \equiv k \ln (w) & (\bmod 2 \pi j) \\
\ln (z w) & \equiv \ln (z)+\ln (w) & & (\bmod 2 \pi j) \\
\ln (z / w) & \equiv \ln (z)-\ln (w) & & (\bmod 2 \pi j)
\end{array}
$$

Lemma 11 (General exponentiation). So far we have only exponentiation for an exponent $k \in \mathbb{Z}$, by adding $m \in \mathbb{N}$ we can define the quotient $k / m \in \mathbb{Q}$ that together with $z \in \mathbb{C}$ gives

$$
\begin{aligned}
z^{k / m} & =e^{\ln (z) k / m} \\
& =\exp ((\ln |z|+j(\arg z+2 \pi n)) k / m) \\
& =\exp (\ln |z| \cdot k / m) \exp ((\arg z+2 \pi n) j k / m) \\
& =|z|^{k / m} \exp ((\arg z+2 \pi n) j k / m)=\sqrt[m]{z^{k}}
\end{aligned}
$$

like in the reals, except that we have m values because of the m-th root. If we let $w \in \mathbb{C}$ the expression z^{w} cannot be equal to an unique value because

$$
\begin{aligned}
z^{w}=e^{w \ln z} & =\exp (w(\ln |z|+j \arg z+2 \pi n j)) \\
& =e^{w(\ln |z|+j \arg z)} e^{w 2 \pi n j}
\end{aligned}
$$

instead it is said to be multivalued. This means that there are no general exponentiation rules.

3 Fourier Series

Definition 15 (Real trigonometric polynomial). Let $\omega=2 \pi / T \in \mathbb{R}$ and A_{n}, B_{n} be sequences in \mathbb{R}. We define a real trigonometric polynomial of degree N to be

$$
\tau_{N}(t)=\frac{A_{0}}{2}+\sum_{n=1}^{N} A_{n} \cos (n \omega t)+B_{n} \sin (n \omega t)
$$

Lemma 12 (Orthogonality of the basis functions). Let $m, n \in \mathbb{N}_{0}$

$$
\begin{aligned}
& \int_{0}^{T} \cos (m \omega t) \cos (n \omega t)= \begin{cases}T & m=n=0 \\
T / 2 & m=n>0 \\
0 & m \neq n\end{cases} \\
& \int_{0}^{T} \sin (m \omega t) \sin (n \omega t)= \begin{cases}T / 2 & m=n \wedge n \neq 0 \\
0 & m \neq n \\
0 & m=0 \vee n=0\end{cases} \\
& \int_{0}^{T} \cos (m \omega t) \sin (n \omega t)=0
\end{aligned}
$$

Definition 16. We denote with Ω the space of real valued, T-periodic, piecewise continuous functions, that have only a finite number of discontinuities, in which both the right and left limit exist, within the interval $[0, T)$.

Theorem 8 (Fourier coefficients). For any $f \in \Omega$ we can now define the Fourier coefficients

$$
\begin{array}{ll}
a_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cos (n \omega t) \mathrm{d} t & a_{0}=\frac{2}{T} \int_{0}^{T} f(t) \mathrm{d} t \\
b_{n}=\frac{2}{T} \int_{0}^{T} f(t) \sin (n \omega t) \mathrm{d} t & b_{0}=0
\end{array}
$$

Worth noting are the special cases when $n=0$.
Definition 17 (Fourier Polynomial). We can now use the Fourier coefficients as sequences for a trigonometric polynomial to obtain a Fourier Polynomial

$$
S_{N}(t)=\frac{a_{0}}{2}+\sum_{n=1}^{N} a_{n} \cos (n \omega t)+b_{n} \sin (n \omega t)
$$

Lemma 13. A trigonometric polynomial has the smallest distance (by the L^{2} metric) from a function $f \in \Omega$, iff $A_{n}=a_{n}$ and $B_{n}=b_{n}$, in other words iff it is a Fourier Polynomial.

Definition 18 (Fourier Series). We can finally define the Fourier Series to be the infinite Fourier Polynomial, by letting $N \rightarrow \infty$

$$
S(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \omega t)+b_{n} \sin (n \omega t)
$$

Theorem 9 (Fourier coefficients of even and odd functions). Recall that a function is said to be even if $f(-x)=f(x)$ or odd if $f(-x)=-f(x)$. We can show that if a function is

- even, then $b_{n}=0$ for all n, and

$$
a_{n}=\frac{4}{T} \int_{0}^{T / 2} f(t) \cos (n \omega t) \mathrm{d} t
$$

- odd, then $a_{n}=0$ for all n, and

$$
b_{n}=\frac{4}{T} \int_{0}^{T / 2} f(t) \sin (n \omega t) \mathrm{d} t
$$

Lemma 14 (Linearity of Fourier coefficients). Recall that linearity means $L(\mu x+\lambda y)=\mu L(x)+\lambda L(y)$. We then let $f, g \in \Omega$ be functions with Fourier series and $h=\mu f+\lambda g$ where $\mu, \lambda \in \mathbb{R}$ are constants. By denoting with $a_{n}^{(f)}$ the Fourier coefficient a_{n} of the function f, and similarly with $b_{n}^{(f)}$, it is easily shown that

$$
a_{n}^{(h)}=\mu a_{n}^{(f)}+\lambda a_{n}^{(g)} \quad b_{n}^{(h)}=\mu b_{n}^{(f)}+\lambda b_{n}^{(g)}
$$

Lemma 15 (Fourier coefficients after time dilation). Let $f \in \Omega$ be a function with a Fourier Series and $g(t)=f(r t)$ with $0 \neq r \in \mathbb{R}$. It follows that $a_{n}^{(g)}=a_{n}^{(f)}$ and $b_{n}^{(g)}=\operatorname{sgn}(r) \cdot b_{n}^{(f)}$.

Lemma 16 (Fourier coefficients after time translation). Let $f \in \Omega$ be a function with a Fourier Series and $g(t)=f(t+\tau)$ with $\tau \in \mathbb{R}$. It follows that

$$
\begin{aligned}
a_{n}^{(g)} & =\cos (n \omega \tau) \cdot a_{n}^{(f)}+\sin (n \omega \tau) \cdot b_{n}^{(f)} & & n \geq 0 \\
b_{n}^{(g)} & =-\sin (n \omega \tau) \cdot a_{n}^{(f)}+\cos (n \omega \tau) \cdot b_{n}^{(f)} & & n>0
\end{aligned}
$$

Theorem 10 (Fourier theorem). For any $f \in \Omega$ the Fourier series of f converges in L^{2} metric to f.
$\lim _{N \rightarrow \infty}\left\|\frac{a_{0}}{2}+\sum_{n=0}^{N} a_{n} \cos (n \omega t)+b_{n} \sin (n \omega t)-f(t)\right\|=0$
Theorem 11 (Plancherel Parselval theorem). Let $f \in$ Ω with a Fourier Series with coefficients a_{n} and b_{n}.

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \leqq \frac{2}{T} \int_{0}^{T}|f(t)|^{2} \mathrm{~d} t=\|f\|^{2}
$$

Theorem 12. Both sequences a_{n}, b_{n} for the Fourier coefficients of a function $f \in \Omega$ converge to zero.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{2}{T} \int_{0}^{T} f(t) \cos (n \omega t) \mathrm{d} t=0 \\
& \lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \frac{2}{T} \int_{0}^{T} f(t) \sin (n \omega t) \mathrm{d} t=0
\end{aligned}
$$

Theorem 13 (Rate of convergence of Fourier coefficients). If f is a T-periodic, $(m-2)$ times differentiable, continuous function. And if its $(m-1)$-th derivative is pieceweise monotonous and $\in \Omega$, then there exists a constant $c \in \mathbb{R}$ such that

$$
\left|a_{n}\right| \leq \frac{c}{n^{m}} \quad\left|b_{n}\right| \leq \frac{c}{n^{m}} \quad m, n \in \mathbb{N}
$$

Theorem 14 (Integration and differentiation of the Fourier series). It is possible to show from the previous theorem (and others before) that when $m \geq 2$ the Fouriers converges uniformly. This means that it is possible to integrate or differentiate the series term by term.

$$
f^{\prime}(t)=\sum_{n=1}^{\infty} b_{n} n \omega \cos (n \omega t)-a_{n} n \omega \sin (n \omega t)
$$

and

$$
\begin{aligned}
\int_{0}^{t} f(\tau) \mathrm{d} \tau & =\left(\sum_{n=1}^{\infty} \frac{b_{n}}{n \omega}\right)+\frac{a_{0}}{2} t \\
& +\left(\sum_{n=1}^{\infty} \frac{a_{n}}{n \omega} \sin (n \omega t)-\frac{b_{n}}{n \omega} \cos (n \omega t)\right)
\end{aligned}
$$

Theorem 15 (Dirichlet pointwise convergence). Let $f \in \Omega$, then it is known that its Fourier series converges to

$$
\lim _{\epsilon \rightarrow 0} \frac{f(t-\epsilon)+f(t+\epsilon)}{2}
$$

for every t, where the left and right derivative $f^{\prime}(t-\epsilon)$, $f^{\prime}(t+\epsilon)$, with $\epsilon \rightarrow 0$, exist.

In the special case where f is continuous at t, and the derivatives exist, there the Fourier series converges exactly to $f(t)$, i.e. the value of the function at t.

Definition 19 (Complex representation of the Fourier coefficients). By letting $n \in \mathbb{Z}$ and

$$
c_{n}=\overline{c_{-n}}=\frac{a_{n}-j b_{n}}{2}=\frac{1}{T} \int_{0}^{T} f(t) e^{-j n \omega t} \mathrm{~d} t
$$

using a notational trick for negative indices. We can compactly write a Fourier series or polynomial as

$$
S(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{j n \omega t}
$$

Theorem 16 (Complex Fourier coefficients of even and odd functions). By the definition of c_{n} and the previous similar theorem for the real coefficients, it is clear that when a function $f \in \Omega$ is even, then $\operatorname{Im}\left(c_{k}\right)=0$, whereas when f is odd $\operatorname{Re}\left(c_{k}\right)=0(k \in \mathbb{Z})$.

Theorem 17 (Complex Fourier coeffients after time translation). Similarly to the previous theorem, we can now compactly write that if $f \in \Omega$ has a Fourier series with coefficients $c_{k}^{(f)}$, and $g(t)=f(t+\tau)$, then

$$
c_{k}^{(g)}=e^{j k \omega \tau} c_{k}^{(f)} \quad k \in \mathbb{Z}
$$

4 License

This work is licensed under a Creative Commons "Attribution-NonCommercial-
ShareAlike 4.0 Inter-

BY

N

