aboutsummaryrefslogtreecommitdiffstats
path: root/komfour_zf.tex
blob: cc42a1d4c850531303e96831ddea8615ed666790 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
% !TeX program = xelatex
% !TeX encoding = utf8
% !TeX root = komfour_zf.tex

%% TODO: publish to CTAN
\documentclass[twocolumn, margin=small]{tex/hsrzf}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Packages

%% TODO: publish to CTAN
\usepackage{tex/hsrstud}

%% Language configuration
\usepackage{polyglossia}
\setdefaultlanguage[variant=uk]{english}

%% Math
\usepackage{amsmath}
\usepackage{amsthm}

%% Layout
\usepackage{enumitem}


%% License configuration
\usepackage[
  type={CC},
  modifier={by-nc-sa},
  version={4.0},
  lang={english},
]{doclicense}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Metadata

\course{Electrical Engineering}
\module{KomFour}
\semester{Spring Semester 2020}

\authoremail{npross@hsr.ch}
\author{Naoki Pross -- \texttt{\theauthoremail}}

\title{Cheat sheets for \texttt{\themodule}}
\date{\thesemester}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Macros and settings

%% Equal by definition
\newcommand\defeq{\overset{\mathrm{def.}}{=}}

%% number sets
\newcommand\Nset{\mathbb{N}}
\newcommand\Zset{\mathbb{Z}}
\newcommand\Qset{\mathbb{Q}}
\newcommand\Rset{\mathbb{R}}
\newcommand\Cset{\mathbb{C}}

%% Missing operators
\DeclareMathOperator\sgn{sgn}

%% Complex operators
\DeclareMathOperator\cjs{cjs}
\newcommand\cjsl[1]{\cos #1 + j\sin #1}

\newcommand\ej[1]{e^{j#1}}

\newcommand\conj[1]{\overline{#1}}
\newcommand\len[1]{\lvert#1\rvert}

\renewcommand\Re{\operatorname{Re}}
\renewcommand\Im{\operatorname{Im}}

%% Theorems
\newtheoremstyle{komfourzf} % name of the style to be used
  {\topsep}
  {\topsep}
  {}
  {0pt}
  {\bfseries}
  {.}
  { }
  { }

\theoremstyle{komfourzf}
\newtheorem{theorem}{Theorem}
\newtheorem{definition}{Definition}
\newtheorem{lemma}{Lemma}

\setlist[description]{%
  align=right, labelwidth=2cm, leftmargin=!, %
  format={\normalfont\itshape}}

\setlist[itemize]{%
  align=right, labelwidth=5mm, leftmargin=!}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Document

\begin{document}

\section{Complex Numbers}

\begin{definition}[Complex Unit and Zero]
  \[
    j \defeq +\sqrt{-1} \iff j^2 = -1
  \]
  \[
    1 = (1,0) \quad 0 = (0,0) \quad j = (0,1)
  \]
\end{definition}

\begin{definition}[Negation and Sum] Let \(z, w \in \Cset\)
\[
  -z = (-z_1, -z_2) \quad
  z \oplus w =  (z_1 + w_1, z_2 + w_2)
\]
\end{definition}

\begin{lemma}
  The complex numbers form an additive group. Let \(z, w, v \in \Cset\), we have
  \begin{description}[leftmargin=3cm]
    \item[Identity] \(z + 0 = z\)
    \item[Commutativity] \(z + w = w + z\)
    \item[Associativity] \(z + (w + v) = (z + w) + v\)
    \item[Inverse property] \(z + (-z) = (-z) + z = 0\)
  \end{description}
\end{lemma}

\begin{definition}[Multiplication] Let \(z, w \in \Cset\)
  \[
    (a,b) \odot (c,d) = (ac - bd, ad + bc)
  \]
\end{definition}

\begin{lemma} The complex numbers form a commutative ring. Let \(z,w,v \in\Cset\)
  \begin{description}[leftmargin=3cm]
    \item[Identity] \(1\cdot z = z\)
    \item[Commutativity] \(z \cdot w = w \cdot z\)
    \item[Associativity] \(z (w v) = (z w) v\)
    \item[Distributivity] \(z (w + v) = zw + zv\)
  \end{description}
\end{lemma}

\begin{definition}[Real and imaginary part and conjugation]
  Let \(z = a + jb\). The \emph{real} part of \(z\) is \(\Re(z) = a\), similarly the \emph{imaginary} part is \(\Im(z) = b\). We can thus define the \emph{complex conjugate} \(\conj{z}\) of \(z\) to be
  \[
    z = \Re(z) + j\Im(z)
    \quad
    \conj{z} = \Re(z) - j\Im(z)
  \]
\end{definition}

\begin{definition}[Absolute value]
  If \(z = a + jb\) we define the \emph{absolute value} \(\len{z} = \sqrt{a^2 + b^2}\)
\end{definition}

\begin{lemma}[Properties of absolute value]
  Let \(z,w\in\Cset\). We have \(z\conj{z} = \len{z}^2\) and as a consequence \(\len{zw} = \len{z}\cdot\len{w}\) and \(\len{\conj{z}} = \len{z}\). In addition we have the inequalities
  \begin{align*}
    -\len{z} \leq &\Re(z) \leq \len{z} &
    \len{z} &\leq \len{\Re(z)} + \len{\Im(z)} \\
    -\len{z} \leq &\Im(z) \leq \len{z} &
    \len{z + w} &\leq \len{z} + \len{w}
  \end{align*}
  The last one is the \emph{triangle inequality}. Notice that \(\len{z} \in\Rset^+_0\).
\end{lemma}

\begin{definition}[Reciprocal and quotients]
  If \(z\) is a non-zero complex number we define the \emph{reciprocal} \(z^{-1}\) of \(z\) to be \(z^{-1} = \len{z}^{-2}\conj{z}\). If \(z = 0\) the reciprocal \(0^{-1}\) is left undefined.
  It is now possible to define \(z/w = zw^{-1}\) with \(z,w \in\Cset\) and \(w \neq 0\).
\end{definition}

\begin{lemma}[Properties of conjugation]
  Let \(z,w \in\Cset\).
  \(\conj{z} = z\) iff \(z \in \Rset\) and \(\conj{z} = \conj{w}\) iff \(z = w\).
  Furthermore:
  \begin{align*}
    \conj{\conj{z}} &= z &
    \conj{z \pm  w} &= \conj{z} \pm \conj{w} &
    \Re(z) &= (z + \conj{z})/2 \\
    \conj{z\cdot w} &= \conj{z}\cdot\conj{w} &
    \conj{z/w} &= \conj{z}/\conj{w} &
    \Im(z) &= (z - \conj{z})/2j
  \end{align*}
\end{lemma}

\begin{definition}[Argument and polar notation]
  An alternative representation of a complex number \(z = a + jb\) is its \emph{polar form} \(z = r \angle \phi\), where \(r = \len{z}\) and \(\phi = \arg{z}\).
  \begin{align*}
    a &= r\cos\phi &
    b &= r \sin\phi &
    r &= \sqrt{z\conj{z}}
  \end{align*}
  For \(a = 0\) we define \(\phi = \lim_{a\to 0} \arctan(b/a) = \pm\pi/2\) and otherwise
  \begin{align*}
    \phi = \arg(z)
    &= \begin{cases}
      \arctan(b/a) & a > 0 \\
      \arctan(b/a) + \pi & a < 0
    \end{cases} \\
    &= \begin{cases}
      \arccos(a/r) & b \geq 0 \\
      -\arccos(b/r) & b < 0 \\
    \end{cases}
  \end{align*}
  Another variant of this notation is
  \[
    z = r\cjs\phi = r(\cos\phi + j\sin\phi)
  \]
\end{definition}

\begin{lemma}[Arithmetic in polar notation]
  Let \(z,w\in\Cset\) then the product \(zw\) has
  \[
    \len{zw} = \len{z}\cdot\len{w} \quad
    \arg(zw) = \arg z + \arg w
  \]
  Similarly the quotient \(z/w\) follows
  \[
    \len{z/w} = \len{z}/\len{w} \quad
    \arg(z/w) = \arg z - \arg w
  \]
  Lastly from the product we see that for \(k \in \Nset\)
  \[
    \len{z^k} = \len{z}^k \quad
    \arg{z^k} = k \arg{z}
  \]
\end{lemma}

\begin{theorem}[De Moivre's formula]
  Let \(n \in\Nset\)
  \[
    \left(\cos\phi + j\sin\phi\right)^n = \cos(n\phi) + j\sin(n\phi)
  \]
  As a consequence with the binomial formula
  \((a + b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^n\), recalling that \(\binom{n}{k} = n!/(k!(n-k)!)\) (Pascal's triangle), we have
  \begin{align*}
    \sin(nx)&=\sum _{k=0}^{n}{\binom {n}{k}}(\cos x)^{k}\,(\sin x)^{n-k}\,\sin {\frac {(n-k)\pi }{2}}\\
    \cos(nx)&=\sum _{k=0}^{n}{\binom {n}{k}}(\cos x)^{k}\,(\sin x)^{n-k}\,\cos {\frac {(n-k)\pi }{2}}
  \end{align*}
\end{theorem}

\section{Complex valued functions}

\begin{definition}[Function in \(\Cset\)]
  Let \(f: \mathbb{D} \to \mathbb{W}\) with both \(\mathbb{D}, \mathbb{W} \subseteq \Cset\) 
  that maps \(z = (a + jb) \mapsto w = (u + jv)\),
  then \(u = \Re f(z)\) and \(v = \Im f(z)\).
  If \(f\) is a bijection with inverse \(f^{-1}\), then \(a = \Re f^{-1}(w), b = \Im f^{-1}(w)\).
\end{definition}

\begin{definition}[Differentiation in \(\Cset\)]
  Let \(f\) be a function of \(z\) and \(h \in \Cset\). We have the limit
  \[
    \lim_{\len{h} \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = f'(z_0)
  \]
  to define the \emph{derivative} of \(f\) at the point \(z_0\).
\end{definition}

\begin{lemma}[Local dilation and rotation]
  Let \(f\) be a differentiable function in \(\Cset\).
  If \(f'(z) \neq 0\) everywhere, then \(f\) is a conformal map (i.e. preserves angles) with local dilation of \(\len{f'(z)}\) and rotation of \(\arg f'(z)\)
\end{lemma}

\begin{definition}[Linear function]

\end{definition}

\begin{definition}[Monomial and \(n\)-th root]
  Let \(w = z^n\) be a monomial of degree \(n\in\Nset\). Using the polar notation we see that
  \((r\angle \phi)^n = r^n \angle (n\phi)\). Because \(r\angle\phi = r\angle(\phi+2\pi)\) there cannot be a bijection between \(w\) and \(z\), if we want to define an inverse function \(z = \sqrt[n]{w}\) we get many values with the form
  \[
    z_k = \sqrt[n]{r}\angle(\phi + k2\pi)/n \qquad 0 \leq k < n
  \]
  This fact implies that in general for \(z,u \in\Cset\) \(\sqrt[n]{zu} \neq \sqrt[n]{z}\sqrt[n]{u}\), as the relationship holds only for \emph{some} values of \(\sqrt[n]{z} \text{ and } \sqrt[n]{u}\).
\end{definition}

\begin{theorem}[Roots of a polynomial]
  Every complex polynomial of degree \(n\) has always \(n\) roots in \(\Cset\).
\end{theorem}

\begin{theorem}
  Every complex polynomial of degree \(n\) with coefficients can be \emph{uniquely} rewritten in term of its roots.
  \[
    P(z) = \sum_{k=0}^n a_k z^k = a_n \prod_{k=0}^{n} (z - z_k)
  \]
\end{theorem}

\begin{theorem}[Polynomal with real coefficients]
  The roots of a polynomial with real coefficients of degree \(n\), always come in conjugate complex pairs of \(r\) and \(\conj{r}\). That is because
  \[
    (z - r)(z - \conj{r}) = z^2 - 2\Re(r)z + \len{z}^2
  \]
\end{theorem}

\begin{lemma}
  From the previous theorem follows that a polynomial with real coefficients of \emph{odd} degree, has \emph{always} at least one real solution because \(r \in\Rset \iff r = \conj{r}\).
\end{lemma}

\begin{theorem}
  All roots of a polynomial \(p(z) = \sum_{k=0}^n a_k z^k\) are inside of the open disk centered at the origin of radius \(\sum_{k=0}^n \len{a_k / a_n}\).
\end{theorem}

\begin{theorem}[Cardano's cubic formula]
  % TODO
\end{theorem}

\begin{definition}[Exponential]
  If \(z\) is a complex number we define the exponential function \(e^z\) by its convergent power series
  \[
    e^z = \sum_{n=0}^\infty \frac{z^n}{n!}
  \]
\end{definition}

\begin{theorem}[Euler's formula]
  By setting the argument of the exponential function to \(jt\) for some \(t \in\Rset\) we can reorder the power series to be a sum of the power series of \(j\sin\) and \(\cos\), and thus define
  \[
    e^{jt} = \cos t + j\sin t = \cjs t = 1\angle t
  \]
\end{theorem}

\begin{lemma}[Rules for exponents]
  Let \(a,b \in\Cset\) and \(k\in\Zset\), we can show that
  \[
    e^a e^b = e^{a+b} \quad
    e^a / e^b = e^{a-b} \quad
    \left(e^a \right)^k = e^{ak}
  \]
\end{lemma}

\begin{definition}[Trigonometric functions]
  When \(z\) is a complex number we define
  \begin{align*}
    \cos z &= \frac{e^{jz} + e^{-jz}}{2} &
    \sin z &= \frac{e^{jz} - e^{-jz}}{2j}
  \end{align*}
  like the (real) hyperbolic trigonometric functions
  \begin{align*}
    \cosh z &= \left( e^z + e^{-z} \right)/2 &
    \sinh z &= \left( e^z - e^{-z} \right)/2
  \end{align*}
  Notice that the sinus function is point symmetric to \(\pi/2\), because \(\sin(\pi/2 - z) = \sin(\pi/2 + z)\).
\end{definition}

\begin{lemma}[Some trigonometric identities] Let \(x,a,b \in\Rset\) and \(\alpha,\beta \in\Cset\)
  \begin{align*}
    \sin(x + \pi/2) &= \cos(x) \qquad \cos(x - \pi/2) = \sin(x) \\
    \sinh(jx) &= j\sin(x) \qquad \cosh(jx) = \cos(x) \\
    \sin(a + jb) &= \sin(a)\cosh(b) + j\cos(a)\sinh(b) \\
    \cos(a + jb) &= \cos(a)\cosh(b) + j\sin(a)\sinh(b) \\
    2\sin(\alpha)\sin(\beta) &= \cos(\alpha - \beta) - \cos(\alpha + \beta) \\
    2\sin(\alpha)\cos(\beta) &= \sin(\alpha - \beta) + \sin(\alpha + \beta)
  \end{align*}
\end{lemma}

\begin{lemma}[Superposition of sinuses]
  Let \(s(t) = A\sin(\omega t + \varphi)\) be a sinusoidal wave.
  We can rewrite \(s\) in complex form with
  \[
    s(t) = \Im\left(Ae^{j(\omega t + \varphi)}\right) = \Im
      Ae^{j\varphi}\cdot e^{j\omega t}
  \]
  If we now wish to sum \(N\) sinusoids with the same frequency \(\omega\), the resulting sinusoid \(A\sin(\omega t + \varphi)\) has
  \[
    A = \left\lvert \sum_{n=1}^N A_n e^{j\varphi_n} \right\lvert
    \quad
    \varphi = \arg\sum_{n=1}^N A_n e^{j\varphi_n}
  \]
\end{lemma}

\begin{definition}[Logarithm]
  Because \(w = e^z\) defined from \(\Cset \to \Cset\) is not a bijection (\(e^{z + 2\pi j} = e^z\)), unless we restrict the imaginary part of the domain to \((\pi, \pi]\), we get only an equivalence relationship because
  \[
    \ln\left[\len{w} e^{j(\phi + k2\pi)}\right] = \ln\len{w} + j(\phi + k2\pi)
  \]
  where \(k \in\Zset\). Similarly for \(z,w\in\Cset\)
  \begin{align*}
    \ln(w) &\equiv z &\pmod{2\pi j} \\
    \ln(w^k) &\equiv k\ln(w) &\pmod{2\pi j} \\
    \ln(zw) &\equiv \ln(z) + \ln(w) &\pmod{2\pi j} \\
    \ln(z/w) &\equiv \ln(z) - \ln(w) &\pmod{2\pi j}
  \end{align*}
\end{definition}

\begin{lemma}[General exponentiation]
  So far we have only exponentiation for an exponent \(k\in\Zset\), by adding \(m \in\Nset\) we can define the quotient \(k/m \in\Qset\) that together with \(z\in\Cset\) gives
  \begin{align*}
    z^{k/m} &= e^{\ln(z) k/m} \\
    &= \exp\big((\ln\len{z} + j(\arg z + 2\pi n)) k/m\big) \\
    &= \exp\big(\ln\len{z}\cdot k/m)\exp((\arg z + 2\pi n)jk/m\big) \\
    &= \len{z}^{k/m}\exp\big((\arg z + 2\pi n)jk/m\big)= \sqrt[m]{z^k}
  \end{align*}
  like in the reals, except that we have \(m\) values because of the \(m\)-th root. If we let \(w \in\Cset\) the expression \(z^w\) cannot be equal to an unique value because
  \begin{align*}
    z^w = e^{w \ln z} &= \exp\big( w (\ln\len{z} + j \arg{z} + 2\pi nj)\big) \\
    &= e^{w(\ln\len{z} + j\arg z)} e^{w2\pi nj}
  \end{align*}
  instead it is said to be \emph{multivalued}. This means that there are no general exponentiation rules.
\end{lemma}

\section{Fourier Series}
\begin{definition}[Real trigonometric polynomial]
  Let \(\omega = 2\pi/T \in\Rset\) and \(A_n, B_n\) be sequences in \(\Rset\).
  We define a \emph{real trigonometric polynomial} of degree \(N\) to be
  \[
    \tau_N(t) = \frac{A_0}{2} + \sum_{n=1}^N A_n \cos(n\omega t) + B_n \sin(n\omega t)
  \]
\end{definition}

\begin{lemma}[Orthogonality of the basis functions]
  Let \(m,n \in\Nset_0\)
  \begin{align*}
    \int\limits_0^T \cos(m\omega t)\cos(n\omega t)
    &= \begin{cases}
        T & m = n = 0 \\
        T/2 & m = n > 0 \\
        0 & m \neq n
      \end{cases} \\
    \int\limits_0^T \sin(m\omega t)\sin(n\omega t)
    &= \begin{cases}
        T/2 & m = n \wedge n \neq 0 \\
        0 & m \neq n \\
        0 & m = 0 \vee n = 0
      \end{cases} \\
    \int\limits_0^T \cos(m\omega t)\sin(n\omega t) &= 0
  \end{align*}
\end{lemma}

\begin{definition}
  We denote with \(\Omega\) the space of real valued, \(T\)-periodic, piecewise continuous functions, that have only a finite number of discontinuities, in which both the right and left limit exist, within the interval \([0,T)\).
\end{definition}

\begin{theorem}[Fourier coefficients]
  For any \(f\in\Omega\) we can now define the \emph{Fourier coefficients}
  \begin{align*}
    a_n &= \frac{2}{T}\int\limits_0^T f(t)\cos(n\omega t)\di{t} & a_0 &= \frac{2}{T}\int\limits_0^T f(t)\di{t} \\
    b_n &= \frac{2}{T}\int\limits_0^T f(t)\sin(n\omega t)\di{t} & b_0 &= 0
  \end{align*}
  Worth noting are the special cases when \(n=0\).
\end{theorem}

\begin{definition}[Fourier Polynomial]
  We can now use the Fourier coefficients as sequences for a trigonometric polynomial to obtain a \emph{Fourier Polynomial}
  \[
    S_N(t) = \frac{a_0}{2} + \sum_{n=1}^N a_n\cos(n\omega t) + b_n\sin(n\omega t)
  \]
\end{definition}

\begin{lemma}
  A trigonometric polynomial has the smallest distance (by the \(L^2\) metric) from a function \(f\in\Omega\), iff \(A_n = a_n\) and \(B_n = b_n\), in other words iff it is a Fourier Polynomial.
\end{lemma}

\begin{definition}[Fourier Series]
  We can finally define the \emph{Fourier Series} to be the infinite Fourier Polynomial, by letting \(N\to\infty\)
  \[
    S(t) = \frac{a_0}{2} + \sum_{n=1}^\infty a_n\cos(n\omega t) + b_n\sin(n\omega t)
  \]
\end{definition}

\begin{theorem}[Fourier coefficients of even and odd functions]
  Recall that a function is said to be \emph{even} if \(f(-x) = f(x)\) or \emph{odd} if \(f(-x) = -f(x)\). We can show that if a function is
  \begin{itemize}
    \item even, then \(b_n = 0\) for all \(n\), and
      \[
        a_n = \frac{4}{T}\int\limits_0^{T/2} f(t)\cos(n\omega t)\di{t}
      \]
    \item odd, then \(a_n = 0\) for all \(n\), and
      \[
        b_n = \frac{4}{T}\int\limits_0^{T/2} f(t)\sin(n\omega t)\di{t}
      \]
  \end{itemize}
\end{theorem}

\begin{lemma}[Linearity of Fourier coefficients]
  Recall that linearity means \(L(\mu x + \lambda y) = \(\mu L(x) + \lambda L(y)\). We then let \(f,g \in\Omega\) be functions with Fourier series and \(h = \mu f + \lambda g\) where \(\mu,\lambda\in\Rset\) are constants.
  By denoting with \(a_n^{(f)}\) the Fourier coefficient \(a_n\) of the function \(f\), and similarly with \(b_n^{(f)}\), it is easily shown that
  \begin{align*}
    a_n^{(h)} &= \mu a_n^{(f)} + \lambda a_n^{(g)} &
    b_n^{(h)} &= \mu b_n^{(f)} + \lambda b_n^{(g)}
  \end{align*}
\end{lemma}

\begin{lemma}[Fourier coefficients after time dilation]
  Let \(f\in\Omega\) be a function with a Fourier Series and \(g(t) = f(rt)\) with \(0 \neq r \in\Rset\). It follows that
  \(a_n^{(g)} = a_n^{(f)}\) and \(b_n^{(g)} = \sgn(r) \cdot b_n^{(f)}\).
\end{lemma}

\begin{lemma}[Fourier coefficients after time translation]
  Let \(f\in\Omega\) be a function with a Fourier Series and \(g(t) = f(t + \tau)\) with \(\tau\in\Rset\). It follows that
  \begin{align*}
    a_n^{(g)} &= \cos(n\omega \tau)\cdot a_n^{(f)} + \sin(n\omega \tau)\cdot b_n^{(f)} & n &\geq 0\\
    b_n^{(g)} &= -\sin(n\omega \tau)\cdot a_n^{(f)} + \cos(n\omega \tau)\cdot b_n^{(f)} & n &> 0
  \end{align*}
\end{lemma}

\begin{theorem}[Fourier theorem]
  For any \(f\in\Omega\) the Fourier series of \(f\) converges in \(L^2\) metric to \(f\).
  \[
    \lim_{N\to\infty} \left\lVert 
      \frac{a_0}{2} + \sum_{n=0}^N a_n \cos(n\omega t) + b_n \sin(n\omega t) - f(t) 
    \right\rVert = 0
  \]
\end{theorem}

\begin{theorem}[Plancherel Parselval theorem]
  Let \(f\in\Omega\) with a Fourier Series with coefficients \(a_n\) and \(b_n\).
  \[
    \frac{a_0}{2} + \sum_{n=1}^\infty \left(a_n^2 + b_n^2\right)
      \leqq \frac{2}{T} \int\limits_0^T \lvert f(t)\rvert^2 \di{t} = \left\lVert f \right\rVert^2
  \]
\end{theorem}

\begin{theorem} Both sequences \(a_n, b_n\) for the Fourier coefficients of a function \(f\in\Omega\) converge to zero.
  \begin{align*}
    \lim_{n\to\infty} a_n 
      &= \lim_{n\to\infty} \frac{2}{T}
          \int\limits_0^T f(t) \cos(n\omega t) \di{t} = 0 \\
    \lim_{n\to\infty} b_n 
      &= \lim_{n\to\infty} \frac{2}{T}
          \int\limits_0^T f(t) \sin(n\omega t) \di{t} = 0
  \end{align*}
\end{theorem}

\begin{theorem}[Rate of convergence of Fourier coefficients]
  If \(f\) is a \(T\)-periodic, \((m-2)\) times differentiable, continuous function. And if its \((m-1)\)-th derivative is pieceweise monotonous and \(\in \Omega\), then there exists a constant \(c \in\Rset\) such that
  \[
    \len{a_n} \leq \frac{c}{n^m} \qquad \len{b_n} \leq \frac{c}{n^m} \qquad m,n\in\Nset
  \]
\end{theorem}

\begin{theorem}[Integration and differentiation of the Fourier series]
  It is possible to show from the previous theorem (and others before) that when \(m\geq 2\) the Fouriers converges \emph{uniformly}. This means that it is possible to integrate or differentiate the series term by term.
  \[
    f'(t) = \sum_{n=1}^\infty b_n n\omega\cos(n\omega t) - a_n n\omega\sin(n\omega t)
  \]
  and
  \begin{align*}
    \int\limits_0^t f(\tau) \di{\tau} &=
      \left(\sum_{n=1}^\infty \frac{b_n}{n\omega} \right)
      + \frac{a_0}{2} t \\
      &+ \left(\sum_{n=1}^\infty
          \frac{a_n}{n\omega}\sin(n\omega t)
          - \frac{b_n}{n\omega}\cos(n\omega t)
        \right)
  \end{align*}
\end{theorem}

\begin{theorem}[Dirichlet pointwise convergence]
  Let \(f\in\Omega\), then it is known that its Fourier series converges to
  \[
    \lim_{\epsilon\to 0}\frac{f(t-\epsilon) + f(t+\epsilon)}{2}
  \]
  for every \(t\), where the left and right derivative \(f'(t-\epsilon)\), \(f'(t+\epsilon)\), with \(\epsilon\to 0\), exist.

  In the special case where \(f\) is continuous at \(t\), and the derivatives exist, there the Fourier series converges exactly to \(f(t)\), i.e. the value of the function at \(t\).
\end{theorem}

\begin{definition}[Complex representation of the Fourier coefficients]
  By letting \(n\in\Zset\) and
  \[
    c_n = \conj{c_{-n}} = \frac{a_n - jb_n}{2} = \frac{1}{T}\int\limits_0^T f(t) e^{-jn\omega t} \di{t}
  \]
  using a notational trick for negative indices. We can compactly write a Fourier series or polynomial as
  \[
    S(t) = \sum_{n=-\infty}^\infty c_n e^{jn\omega t}
  \]
\end{definition}

\begin{theorem}[Complex Fourier coefficients of even and odd functions]
  By the definition of \(c_n\) and the previous similar theorem for the real coefficients, it is clear that when a function \(f\in\Omega\) is \emph{even}, then \(\Im(c_k) = 0\), whereas when \(f\) is \emph{odd} \(\Re(c_k) = 0\) (\(k\in\Zset\)).
\end{theorem}

\begin{theorem}[Complex Fourier coeffients after time translation]
  Similarly to the previous theorem, we can now compactly write that if \(f\in\Omega\) has a Fourier series with coefficients \(c_k^{(f)}\), and \(g(t) = f(t + \tau)\), then
  \[
    c_k^{(g)} = e^{jk\omega \tau} c_k^{(f)} \qquad k \in \Zset
  \]
\end{theorem}

%% TODO: fourier transform

\section{License}
\doclicenseThis

\end{document}
% vim: set et ts=2 sw=2 spelllang=en spell linebreak :