\documentclass[a4paper,twoside]{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{mathtools} \usepackage{float} \usepackage{calc} \usepackage[margin=4cm,top=3cm,bottom=3cm]{geometry} \usepackage{fancyhdr} \usepackage[german]{babel} \usepackage[table]{xcolor} \usepackage{tikz} \usepackage{tikz-3dplot} \usepackage{pgfplots} \usepackage{multirow} \usepackage{multicol} \usepackage{arydshln} \usepackage{enumitem} \usepackage{booktabs} \usepackage[tikz]{mdframed} \usetikzlibrary{calc} \pgfplotsset{compat=newest} \mdfsetup{ linecolor=black, linewidth=2pt, % innertopmargin=.5em, innerbottommargin=.75em, frametitlefont=\large\bfseries\ttfamily, frametitlerule=true, frametitlerulewidth=1pt, frametitlebackgroundcolor=gray!20, % subtitlefont=\ttfamily, subtitleaboveline=true, subtitlebackgroundcolor=gray!10, subtitlebelowskip=.5em, subtitleaboveskip=.5em, } \pagestyle{fancy} \fancyhf{} \fancyfoot[C]{\thepage} \fancyhead[C]{Physik 1 Mechanik} \renewcommand{\headrulewidth}{0pt} \renewcommand{\footrulewidth}{0pt} \title{Ph1Mech Zusammenfassung} \author{Naoki Pross} \setlength{\parindent}{0cm} % \setlength{\parskip}{0cm} % \setlength{\columnsep}{1em} \renewcommand{\v}[1]{\mathbf{#1}} \newcommand{\vs}[1]{\boldsymbol{#1}} \newcommand{\dd}[1]{\mathrm{d}#1} \begin{document} \begin{mdframed}[frametitle={Physikalischen Gr\"o{\ss}en und Konstanten}] \small \begin{center} \begin{minipage}{.40\textwidth} \begin{tabular}{l | >{\(}l<{\)} l} Weg & \v{x} & m \\ Geschwindigkeit & \v{v} & m/s \\ Beschleunigung & \v{a} & m/s\(^2\) \\ Masse & m & kg \\ Impuls & \v{p} & kg \(\cdot\) m/s \\ Kraft & \v{F} & kg \(\cdot\) m/s\(^2\) \\ \end{tabular}\par \end{minipage} \hfill \begin{minipage}{.55\textwidth} \begin{tabular}{l | >{\(}l<{\)} l} Winkel & \vs{\varphi} & rad \\ Winkelgeschwindigkeit & \vs{\omega} & rad/2 \\ Winkelbeschleunidung & \vs{\alpha} & rad/2\(^2\) \\ Tr\"agheitsmoment & \underline{\mathbf{J}}, J & kg \(\cdot\) m\(^2\) \\ Drehimpuls & \v{L} & kg \(\cdot\) m\(^2\)/s \\ Drehmoment & \v{M}, \vs{\tau} & Nm \\ \end{tabular}\par \end{minipage} \end{center} % \begin{tabular}{l | >{\(}l<{\)} l} % Energie & E & J = Ws \\ % Arbeit & \Delta E, W & J \\ % Leisung & P & W \\ % \end{tabular} \end{mdframed} \begin{mdframed}[frametitle={Postulate f\"ur Newtonsche Mechanik}] \begin{multicols}{2} \textsc{Absoluter Zeit und Raum} \\ {\small Zeit und Raum sind sowohl vom Beobachter als auch von der darin enthaltenen Objecten und darin stattfindenden physikalischen Vorg\"angen unabh\"angig. }\par \vspace{.5em} \textsc{I. Newtonsche Gesetze} \\ {\small Ein kräftefreier Körper bleibt in Ruhe oder bewegt sich geradlinig mit konstanter Geschwindigkeit }\par \vspace{.5em} \textsc{II. Newtonsche Gesetze} \[ \sum\v{F} = m\,\v{a} \qquad \sum\v{M} = J\vs{\alpha} \\ \] \par \vspace{.5em} \textsc{III. Newtonsche Gesetze} \\ {\small In einem geschlossenen System sind die gesamte Energie und Impuls \emph{immer} erhalten. } \par \vspace{.5em} \textsc{Gallilei Invarianz (Boost)} \\ Beschleunigungen sind vom (nicht drehende) Bezugsystem unabh\"angig. \[ \v{F}' = \v{F} = m\,\ddot{\v{x}}' = m\,\ddot{\v{x}} \] \par \end{multicols} \vspace{.5em} \end{mdframed} \begin{mdframed}[frametitle={Translationsbewegung}] \mdfsubtitle{Spezifische Translationsbewegungen} \begin{center} \begin{minipage}{.4\textwidth} Zweidimensionaler Wurf {\footnotesize (\(\v{a} = \v{g}\))} \begin{align*} x &= v_0\cdot\cos(\vartheta)\cdot t \\ y &= v_0\cdot\sin(\vartheta)\cdot t - \frac{g\cdot t^2}{2} \\ y &= \tan(\vartheta)\cdot x - \frac{g\cdot x^2}{2v_0^2\cos^2(\vartheta)} \\ d &= \frac{v_0^2}{g}\cdot\sin(2 \vartheta) \quad (y = 0) \\ h &= \frac{v_0^2}{2g}\cdot\sin^2(\vartheta) \quad (\dot{y} = 0) \end{align*} \end{minipage} \begin{minipage}{.55\textwidth} \resizebox{\linewidth}{!}{ \begin{tikzpicture} \pgfmathsetmacro{\g}{9.81} \pgfmathsetmacro{\ang}{60.0} \pgfmathsetmacro{\vn}{5.0} \pgfmathsetmacro{\yn}{1.0} \pgfmathsetmacro{\ymax}{\yn + (\vn * \vn) / (2 * \g) * sin(\ang) * sin(\ang)} \pgfmathsetmacro{\d}{(\vn * \vn) / (\g) * sin(2.0 * \ang)} \pgfmathsetmacro{\dm}{\d/2} \begin{axis}[ samples = 80, domain=0:2.5, xmin=-.2, axis equal, axis y line = left, axis x line = middle, axis line shift = 5pt, xtick = {0, \dm, \d}, ytick = {\yn, \ymax}, xticklabels = {0, \(d/2\),\(d\)}, yticklabels = {\(y_0 = 0\), \(h\)}, ] \addplot[dashed, gray] {\yn}; \addplot[dashed, gray] {\ymax}; \addplot[ultra thick, gray]{\yn + tan(\ang) * x - (\g * x^2)/(2 * \vn^2 * cos(\ang)^2)}; \draw[dashed, gray] (axis cs: {\d/2}, 0) -- (axis cs: {\d/2}, {\ymax + .2}); \draw[dashed, gray] (axis cs: \d, 0) -- (axis cs: \d, {\ymax + .2}); % angle \draw[thick] (axis cs: .5,\yn) arc[ start angle = 0, end angle = \ang, radius={transformdirectionx(.5)} ] (axis cs: .5, \yn) node[above right] {\(\vartheta\)}; % vectors \draw[blue, thick, ->] (axis cs: 0,\yn) to node[pos=.8, above left] {\(\v{v}_0\)} (axis cs: {cos(\ang)}, {\yn + sin(\ang)}); \draw[thick, ->] (axis cs: 0, \yn) to node[pos=.6, right] {\(\v{g}\)} (axis cs: 0, {\yn-.5}); % mass \draw[fill=white, black] (axis cs: -.1, {\yn -.1}) rectangle (axis cs: .1, {\yn+.1}) node[pos=.5] {\(m\)}; \end{axis} \end{tikzpicture} } \end{minipage} \end{center} \end{mdframed} \begin{mdframed}[frametitle={Rotationsbewegung und Kreisbewegung}] \begin{center} \begin{minipage}{.5\textwidth} \centering \resizebox{\linewidth}{!}{ \tdplotsetmaincoords{70}{110} \begin{tikzpicture}[tdplot_main_coords] \clip[tdplot_screen_coords] (-1.5,-1.5) rectangle (4.5,4.1); \pgfmathsetmacro{\mx}{2} \pgfmathsetmacro{\my}{3} \pgfmathsetmacro{\mz}{2} \pgfmathsetmacro{\mr}{{sqrt(\mx * \mx + \my * \my}} \coordinate (O) at (0,0,0); \coordinate (M) at (\mx,\my,\mz); % axis \draw[->] (0,0,0) -- (3,0,0) node[anchor=north east]{\(x\)}; \draw[->] (0,0,0) -- (0,3,0) node[anchor=west]{\(y\)}; \draw[->] (0,0,0) -- (0,0,4) node[anchor=south]{\(z\)}; % arcs \tdplotsetrotatedcoords{0}{0}{{atan(\my / \mx)}} \tdplotdrawarc[tdplot_rotated_coords, ->, gray]{(0,0,\mz)}{\mr}{10}{350}{}{} \tdplotresetrotatedcoordsorigin{} % axial vectors \draw[->, ultra thick, black] (0,0,0) -- (0,0,2.5) node[above left] {\(\vs{\omega}\)}; \draw[->, thick, black] (0,0,0) -- node[pos=.5, below] {\(\v{r}\)} (M); % projections \draw[dashed] (O) -- (\mx,\my,0); \draw[dashed] (\mx,\my,0) -- (M); % angle \tdplotdrawarc[->]{(O)}{{\mr/3}}{0}{atan(\my / \mx)}{below}{\(\vs{\varphi}\)} \tdplotsetrotatedcoordsorigin{(M)} \tdplotsetrotatedcoords{0}{0}{{- 90 + atan(\my / \mx)}} % mass vectors \draw[tdplot_rotated_coords, ->, thick, blue!70!black]% (0,0,0) -- (-2,0,0) node[above] {\(\v{v}_t\)}; \draw[tdplot_rotated_coords, ->, thick, red!70!black]% (0,0,0) -- (0,-1.5,0) node[left] {\(\v{a}_c\)}; % box \draw[black, tdplot_rotated_coords] % bottom (-.2,-.2,-.2) -- ( .2,-.2,-.2) -- ( .2, .2,-.2) -- (-.2, .2,-.2) -- (-.2, .2,-.2) -- (-.2,-.2,-.2) % top (-.2,-.2, .2) -- ( .2,-.2, .2) -- ( .2, .2, .2) -- (-.2, .2, .2) -- (-.2, .2, .2) -- (-.2,-.2, .2) % sides (-.2,-.2,-.2) -- (-.2,-.2, .2) ( .2, .2,-.2) -- ( .2, .2, .2) (-.2, .2,-.2) -- (-.2, .2, .2) ( .2,-.2,-.2) -- ( .2,-.2, .2); % \end{tikzpicture}} \end{minipage} \begin{minipage}{.45\textwidth} Physikalische Gr\"o{\ss}en \begin{align*} \vs{\omega} &= \dot{\vs{\varphi}} & \v{L} &= J\vs{\omega} \\ \vs{\alpha} &= \dot{\vs{\omega}} = \ddot{\vs{\varphi}} & \v{M} &= \dot{\v{L}} = J\vs{\alpha} \end{align*} Beziehungen mit der Translationsbewegung \begin{align*} \v{v}_t &= \vs{\omega}\times\v{r} \qquad \v{a}_t = \dot{\v{v}}_t = \vs{\alpha}\times\v{r} \\ \v{a}_c &= \vs{\omega}\times\v{v}_t = \vs{\omega}\times(\vs{\omega}\times\v{r}) \\ &= (\vs{\omega}\cdot\v{r})\vs{\omega} - \vs{\omega}^2\v{r} \xRightarrow{\vs{\omega}\bot\v{r}\phantom{a}} -\vs{\omega}^2\v{r} \end{align*} \end{minipage} \end{center} \mdfsubtitle{Tr\"agheitsmoment} \mdfsubtitle{Umlaufbahn} \end{mdframed} \begin{mdframed}[frametitle={Energie und Arbeit}] \end{mdframed} \begin{mdframed}[frametitle=Statik] \[ \sum_k \v{F}_k = \v{0} \qquad \sum_k \v{M}_k = \v{0} \] \end{mdframed} \begin{mdframed}[frametitle=Dynamik] \[ \sum_k \v{F}_k = m\cdot\v{a} \qquad \sum_k \v{M}_k = J\vs{\alpha} \] \mdfsubtitle{Reibung} \mdfsubtitle{St\"o{\ss}e} \end{mdframed} \begin{mdframed}[frametitle={Deformierb\"are K\"orper}] \end{mdframed} \end{document}