From 31c9f8d6baa79befc09470bf90959dc857d23e1d Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Thu, 16 Apr 2020 16:34:56 +0200 Subject: Add thermodynamics formulas up to ch. 8 --- ph2hat_zf.pdf | Bin 79000 -> 87479 bytes ph2hat_zf.tex | 133 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++- 2 files changed, 132 insertions(+), 1 deletion(-) diff --git a/ph2hat_zf.pdf b/ph2hat_zf.pdf index 328183f..6f3e03c 100644 Binary files a/ph2hat_zf.pdf and b/ph2hat_zf.pdf differ diff --git a/ph2hat_zf.tex b/ph2hat_zf.tex index 55c9a33..943dfae 100644 --- a/ph2hat_zf.tex +++ b/ph2hat_zf.tex @@ -80,7 +80,7 @@ \begin{document} -\section{Einf\"uhrung} +\section{Fluide Einf\"uhrung} \begin{definition}[Fluid] Fl\"ussigkeiten und Gase werden under dem Oberbegriff \emph{Fluide} zusammengefasst. @@ -428,6 +428,137 @@ Gleitwinkel \tan(\varphi) = \frac{F_W}{F_A} = \frac{c_W}{c_A} = \frac{v_V}{v_H} \] +\section*{Kapitel 7} +Absolute Temperatur +\[ + T = \vartheta + \SI{273.15}{\kelvin} = \vartheta - \vartheta_0 +\] + +Stoffmenge +\[ + \SI{1}{\mole} = N_A \text{ Molek\"ule} = \SI{6.022e23}{\per\mole} +\] + +Ausdehnung +\begin{align*} + \Delta \ell &= \alpha\ell\Delta T \\ + \Delta A &= \beta A \Delta T & \beta \approx 2\alpha \\ + \Delta V &= \gamma V \Delta T & \gamma \approx 3\alpha +\end{align*} + +Termische Spannung +\[ + \sigma = E \alpha \Delta T +\] + +\section*{Kapitel 8} +Universelle Gasgleichung f\"ur ideale Gase +\[ + pV = nRT = N_A k T = \text{ (konstant)} +\] +\[ + \frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} +\] + +Molzahl +\[ + n = \frac{m}{M} = \frac{N}{N_A} +\] + +Dichte eines Gases +\[ + \rho = \frac{m}{V} = \frac{M}{V_m} = \frac{pM}{RT} +\] + +\section*{Kapitel 9} +Gesetz von Dalton +\[ + p = \sum_{i = 1}^n p_i +\] + +Volumen-Konzentration +\[ + q_i = \frac{V_i}{V} +\] +\[ + q_i = \frac{n_i}{n} +\] + +Massen-Konzentration +\[ + \mu_i = \frac{m_i}{m} +\] +\[ + \mu_i = \frac{M_i}{M} q_i +\] + +Mol-Masse eines Gas-Gemischs +\[ + M = \sum_{i = 1}^n q_i M_i +\] + +\subsection*{Reales Gas} +Van der Waals-Korrektur +\[ + p'V_m' = nRT + \qquad + p' = p + \frac{a}{V_m^2} + \quad + V_m' = V_m - b +\] + +Van der Waals-Gleichung +\[ + \left(p + \frac{n^2 a}{V^2} \right)(V - nb) = nRT +\] + +Van der Waals-Parameter +\[ + a = \frac{9}{8} R T_k V_{mk} + \qquad + b = \frac{V_{mk}}{3} +\] + +Kritische Gr\"ossen +\[ + V_{mk} = 3b + \qquad + T_k = \frac{8a}{27Rb} + \qquad + p_k = \frac{a}{27b^2} +\] + +\section*{Kapitel 10} +\"Anderung innere Energie +\[ + \Delta U = \Delta W + \Delta Q +\] + +Mechanische Arbeit von einem Gas +\[ + \Delta W = p \Delta V +\] + +Schmelz-/Erstarrungs-W\"arme +\[ + Q_f = q_f m +\] + +Verdampfungs-/Kondensations-W\"arme +\[ + Q_s = q_s m +\] + +W\"armekapazit\"at +\[ + Q = cm\Delta T = n C_m \Delta T = C \Delta T +\] + +W\"arme-Bilanz +\[ + 0 = \sum_{i = 1}^n \Delta Q_i + \Delta Q_{f_i} + \Delta Q_{s_i} +\] + \begin{thebibliography}{2} \bibitem{hsr} \textsc{Hochschule f\"ur Technik Rapperswil (HSR)}. -- cgit v1.2.1