aboutsummaryrefslogtreecommitdiffstats
path: root/tex/signals.tex
diff options
context:
space:
mode:
authorNao Pross <np@0hm.ch>2021-08-16 09:46:07 +0200
committerNao Pross <np@0hm.ch>2021-08-16 09:46:07 +0200
commite51eba8b47faae8dd35b0b7695e61cf9fb11229b (patch)
tree201f741d5ac95646d1254324ef22ae756ba806a7 /tex/signals.tex
parentStart (diff)
downloadSigSys-e51eba8b47faae8dd35b0b7695e61cf9fb11229b.tar.gz
SigSys-e51eba8b47faae8dd35b0b7695e61cf9fb11229b.zip
Start something
I won't ever make it in time but whatever
Diffstat (limited to '')
-rw-r--r--tex/signals.tex74
1 files changed, 72 insertions, 2 deletions
diff --git a/tex/signals.tex b/tex/signals.tex
index 17a5a72..1cb86ce 100644
--- a/tex/signals.tex
+++ b/tex/signals.tex
@@ -1,16 +1,42 @@
\section{Signals}
\subsection{Classification}
-%% TODO
+\begin{figure}[h]
+ \centering
+ \begin{tikzpicture}[
+ nodes = {
+ thick,
+ draw = black,
+ fill = lightgray!20,
+ align = center,
+ inner sep = 2mm,
+ outer sep = 1mm,
+ },
+ sibling distance = 3cm,
+ ]
+ \node {All signals}
+ child {node {Class 1 \\ \(0 < E_n < \infty\)}}
+ child {
+ node {Class 2 \\ \(0 < P_n < \infty\)}
+ child {node {Class 2a \\ periodic}}
+ child {node {Class 2b \\ stochastic}}
+ }
+ ;
+ \end{tikzpicture}
+\end{figure}
\subsection{Properties}
+For class 2b signals the formula for class 2a signals can used by taking \(\lim_{T\to\infty} f_\text{2a}(T)\) (if the limits exists).
+The notation \(\int_T\) is short for an integral from \(-T/2\) to \(T/2\).
\begin{table}[h]
\everymath={\displaystyle}
\[
\begin{array}{l l}
\toprule
- \text{\bfseries Characteristic} & \text{\bfseries Symbol and formula} \\
+ \text{\bfseries Characteristic} & \text{\bfseries Symbol and formula} \\[6pt]
+ \text{\itshape Class 1 Signals} \\
\midrule
\text{Normalized energy} & E_n = \lim_{T\to\infty} \int_T |x|^2 \,dt \\[6pt]
+ \text{\itshape Class 2a Signals} \\
\midrule
\text{Normalized power} & P_n = \lim_{T\to\infty} \frac{1}{T} \int_T |x|^2 \,dt \\[12pt]
\text{Linear mean} & X_0 = \frac{1}{T} \int_T x\, dt \\[12pt]
@@ -24,3 +50,47 @@
\end{array}
\]
\end{table}
+
+\subsection{Correlation}
+\paragraph{Autocorrelation}
+The \emph{autocorrelation} is a measure for how much a signal is coherent, i.e. how similar it is to itself.
+For class 1 signals the autocorrelation is
+\[
+ \varphi_{xx}(\tau) = \lim_{T\to\infty} \int_T x(t) x(t - \tau) \,dt,
+\]
+whereas for class 2a and 2b signals
+\begin{gather*}
+ \varphi_{xx}(\tau) = \frac{1}{T} \int_T x(t) x(t - \tau) \,dt \quad\text{(2a)}, \\
+ \varphi_{xx}(\tau) = \lim_{T\to\infty} \frac{1}{T} \int_T x(t) x(t - \tau) \,dt \quad\text{(2b)}.
+\end{gather*}
+Properties of \(\varphi_{xx}\):
+\begin{itemize}
+ \item \(\varphi_{xx}(0) = X^2 = (X_0)^2 + \sigma^2\)
+ \item \(\varphi_{xx}(0) \geq |\varphi_{xx}(\tau)|\)
+ \item \(\varphi_{xx}(\tau) \geq (X_0)^2 - \sigma^2\)
+ \item \(\varphi_{xx}(\tau) = \varphi_{xx}(\tau + nT)\) (periodic)
+ \item \(\varphi_{xx}(\tau) = \varphi_{xx}(-\tau)\) (even, symmetric)
+\end{itemize}
+The Fourier transform of the autocorrelation \(\Phi_{xx}(j\omega) = \fourier \varphi_{xx}(t)\) is called \emph{energy spectral density} (ESD) for class 1 signals or \emph{power spectral density} (PSD) for class 2 signals.
+
+\paragraph{Cross correlation}
+The \emph{cross correlation} measures the similarity of two different signals \(x\) and \(y\). For class 1 signals
+\[
+ \varphi_{xy}(\tau) = \lim_{T\to\infty} \int_T x(t) y(t-\tau) \,dt.
+\]
+Similarly for class 2a and 2b signals
+\begin{gather*}
+ \varphi_{xy}(\tau) = \frac{1}{T} \int_T x(t) y(t - \tau) \,dt \quad\text{(2a)}, \\
+ \varphi_{xy}(\tau) = \lim_{T\to\infty} \frac{1}{T} \int_T x(t) y(t - \tau) \,dt \quad\text{(2b)}.
+\end{gather*}
+Properties of \(\varphi_{xy}\):
+\begin{itemize}
+ \item For signals with different frequencies \(\varphi_{xy}\) is always 0.
+ \item For stochastic signals \(\varphi_{xy} = 0\)
+\end{itemize}
+
+\subsection{Amplitude density}
+The amplitude density is the probability that a signal has a certain amplitude during a time interval \(T\).
+\[
+ p(a) = \frac{1}{T}\frac{dt}{dx} \in [0,1]
+\]