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Part I
Signals and Systems
1 Signals
1.1 Classification

All signals

Class 1
0 < En < ∞

Class 2
0 < Pn < ∞

Class 2a
periodic

Class 2b
stochastic

1.2 Properties
For class 2b signals the formula for class 2a signals can
used by taking limT →∞ f2a(T ) (if the limits exists).
The notation

�
T

is short for an integral from −T/2 to
T/2.

Characteristic Symbol and formula

Class 1 Signals

Normalized energy En = lim
T →∞

�
T

|x|2 dt

Class 2a Signals

Normalized power Pn = lim
T →∞

1
T

�
T

|x|2 dt

Linear mean X0 = 1
T

�
T

x dt

Mean square X2 = 1
T

�
T

x2 dt

n-th order mean Xn = 1
T

�
T

xn dt

Rectified value |X̄| = 1
T

�
T

|x| dt

Variance σ2 = 1
T

�
T

(x − X0)2
dt

= X2 − X0

Root mean square Xrms =
√

X2

1.3 Correlation
Autocorrelation The autocorrelation is a measure
for how much a signal is coherent, i.e. how similar it is

to itself. For class 1 signals the autocorrelation is

φxx(τ) = lim
T →∞

�
T

x(t)x(t − τ) dt,

whereas for class 2a and 2b signals

φxx(τ) = 1
T

�
T

x(t)x(t − τ) dt (2a),

φxx(τ) = lim
T →∞

1
T

�
T

x(t)x(t − τ) dt (2b).

Properties of φxx:

• φxx(0) = X2 = (X0)2 + σ2

• φxx(0) ≥ |φxx(τ)|

• φxx(τ) ≥ (X0)2 − σ2

• φxx(τ) = φxx(τ + nT ) (periodic)

• φxx(τ) = φxx(−τ) (even, symmetric)

The Fourier transform of the autocorrelation Φxx(jω) =
F φxx(t) is called energy spectral density (ESD) for
class 1 signals or power spectral density (PSD) for class
2 signals.

Cross correlation The cross correlation measures
the similarity of two different signals x and y. For
class 1 signals

φxy(τ) = lim
T →∞

�
T

x(t)y(t − τ) dt.

Similarly for class 2a and 2b signals

φxy(τ) = 1
T

�
T

x(t)y(t − τ) dt (2a),

φxy(τ) = lim
T →∞

1
T

�
T

x(t)y(t − τ) dt (2b).

Properties of φxy:

• For signals with different frequencies φxy is al-
ways 0.

• For stochastic signals φxy = 0

1.4 Amplitude density
The amplitude density is the probability that a signal
has a certain amplitude during a time interval T .

p(a) = 1
T

dt

dx
∈ [0, 1]

2 LTI systems
2.1 Properties
Let S denote a system.
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Property Meaning
static ↔
dynamic

Static means that it is memo-
ryless (in the statistical sense),
whereas dynamic has memory.
Static systems depend only on
the input u, dynamic systems on
du/dt or

�
u dt.

causal ↔
acausal

Causal systems use only informa-
tions from the past, i.e. h(t <
0) = 0. Real systems are always
causal.

linear ↔
nonlinear

The output of a linear system
does not have new frequency
that were not in the input. For
linear system the superposition
principle is valid: S(α1x1 +
α2x2) = α1Sx1 + α2Sx2.

time invariant
↔ time variant

Time invariant systems do not
depend on time, but for ex. only
on time differences.

SISO, MIMO Single input single output, mul-
tiple input multiple output.

BIBO Bounded input bounded output,
i.e. there are some A, B such
that |x| < A and |y| < B for all
t, equivalently

�
R |h| dt < ∞.

2.2 Time domain description
A general LTI system with input x and output y is
described in the time domain with a linear differential
equation of the form

n∑
i=0

aiy
(i) =

m∑
k=0

bkx(k).

2.3 Impulse response
2.4 Transfer function
By taking the Laplace transform of the differential
equation of the system a and assuming all initial con-
ditions to be zero, we obtain

Y

n∑
i=0

ais
i = X

m∑
k=0

bksk,

where Y and X are the Laplace transform of y and x
respectively. We then define the transfer function to
be the ratio H = Y/X, or

H(s) =

m∑
k=0

bksk

n∑
i=0

ais
i

=

m∏
k=0

s − zk

n∏
i=0

s − pi

,

since polynomials can be expressed in terms of their
roots. We say the roots of Y are zeroes and those of
X poles, because of how they appear in the complex
plane of H.

2.5 Frequency response
2.6 Stability
Let S be a system with impulse response h(t) and
transfer function H(s).

Stable All poles are on the LHP1.
Marginally stable There are no poles in the RHP

but a simple pole on the j-axis.
Instable There are poles in the RHP or

poles of hider order on the j-
axis.

2.7 Distortion
For a periodic signal the Fourier transform is a bunch
of weighted Dirac deltas (or a Fourier series), i.e.

F{f} =
∑

i

diδ(ω − ωi).

The spectrum of a sinusoidal signal of frequency ω1 is
only one weighted delta d1δ(ω − ω1). When a system
introduces a nonlinear distortion, with a clean sine in-
put new higher harmonics are found in the output.

To measure the distortion of a signal in the English
literature there is the total harmonic distortion (THD)
defined as

THD = 1
d1

√√√√ n∑
i=2

d2
i .

In the German literature there is the distortion factor
(Klirrfaktor, always between 0 and 1)

k =

√
d2

2 + d2
3 + · · · + d2

n

d2
1 + d2

2 + · · · + d2
n

.

Both are usually given in percent (%) and are related
with

(THD)2 = k2

1 − k2 ,

thus THD ≥ k.

2.8 Stochastic inputs

3 State space representation

D

B
ẋ � x

C

A

u y

Figure 1: Diagram of a LTI MIMO system with vector
variables.
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Symbol Size Name
x n State vector
u m Output vector
y k Output vector
A n × n System matrix
B m × n Input matrix
C n × k Output matrix
D k × m Feed forward matrix

Table 1: Matrices for a state space representation

A system described by a system of linear differ-
ential equations of n-th order, can be equivalently be
described by n first order differential equations. Which
can be compactly written in matrix form as

ẋ = Ax + Bu
y = Cx + Du.

If the system is time variant the matrices are functions
of time.

3.1 Canonical representations
3.1.1 Controllable form

3.1.2 Observable form

3.1.3 Diagonalized or Jordan form

The Jordan form diagonalizes the A matrix. Thus we
need to solve the eigenvalue problem (A − λI)x = 0,
which can be done by setting det(A − λI) = 0, and
solving the characteristic polynomial. The eigenvectors
are obtained by plugging the λ values back into (A −
λI)x = 0, and solving an overdetermined system of
equations. Tip: for a 2 × 2 matrix A the eigenvalues
can be quickly calculated with

m = 1
2

tr A = a + d

2
, p = det A = ad − bc

and then λ1,2 = m ±
√

m2 − p.
The transformation to the eigenbasis T, obtained

by using the eigenvector as columns of a matrix T =[
v1 · · · vn

]
, is then used to compute

Â = TAT−1 B̂ = TB
Ĉ = CT−1 D̂ = D.

In this form the system is described with n decou-
pled states ξi with the equations ξ̇ = Âξ + B̂u and
y = Ĉξ + D̂u.

3.2 Stability
If all eigenvalues λ are not zero and have a positive
real part the system is asymptotically stable. If all
eigenvalues are not zero but at least one has a negative
real part the system is unstable.

3.3 Controllability
The state controllability condition implies that it is
possible — by admissible inputs — to steer the states
from any initial value to any final value within some
finite time window. A LTI state space model is con-
trollable iff the matrix

Q =
[
B AB A2B · · · An−1B

]
has rank Q = n. For a SISO system, if all compo-
nents of the vector B̂ are not zero, then the system is
controllable.

3.4 Observability
Observability is a measure for how well internal states
of a system can be inferred by knowledge of its external
outputs. A LTI state space mode is observable iff the
matrix

Qt =
[
C CA · · · CAn−1]

has rank Q = n. For a SISO system it is also possible
to infer observability from the diagonalized form: if
all elements of the Ĉ are not zero, then the system is
observable.

3.5 Solutions in time domain
3.6 Solutions in the s-domain
By taking the Laplace transform of the system of dif-
ferential equations we obtain

sX − x(0) = AX + BU
Y = CX + DU.

The first equation can be solved for X giving

X = (sI − A)−1 (x(0) + BU) .

Substituting in the second equation results in

Y = C(sI − A)−1 (x(0) + BU) + DU.

Assuming that the initial conditions x(0) = 0, then

Y =
(
C(sI − A)−1B + D

)
U.

from which can define the transfer matrix H to be the
matrix that takes Y to U, i.e.

H = C(sI − A)−1B + D,

that we can use to compute y = L−1 {H L u}.
In the special case of a SISO system the transfer

matrix H is one dimensional and exactly equal to the
transfer function H.

4 Filters
4.1 Normalized Frequency
For this section we will always use a normalized fre-
quency Ω = ω/ωr for some reference frequency ωr.
For TP and HP filters ωr = ωD (cut-off frequency),
whereas for BP and BS ωr = ωm (frequency in the
middle of the band).
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ΩD ΩS

Ω

Amax

Amin

A/dB

Stamp
(passband)

Mold
(stopband)

4.2 LPF Approximations
The approximations of ideal low pass filters generally
have (with some exceptions) the form

|H(jΩ)|2 = H(jΩ) · H∗(jΩ) = 1
1 + K(Ω2)

,

where K is the so called charcteristic function. For a
nicer notation we will define the attenuation function

A(Ω) = 10 log
(
|H(jΩ)|−2)

, [A] = dB.

With that, ideally wish to have an approximation that
satisfies the following requirements:

• A(Ω = 0) = 1 = 0 dB

• A(Ω = 1) = 1/
√

2 ≈ −3 dB

• A(Ω → ∞) = 0

Critically damped filter

Butterworth Let K(Ω2) = Ω2n, thus

A(Ω) = 10 log
(
1 + Ω2n

)
.

To find the order of the filter given two parameters the
formula is

n =
⌈

1
2

log
(

10Amin/10 − 1
10Amax/10 − 1

− ΩS

ΩD

)⌉
.

Chebyshev I Let K(Ω2) = e2C2
n(Ω), so

A(Ω) = 10 log
(
1 + e2C2

n(Ω)
)

,

where Cn = cos(n arccos(Ω)) for |Ω| ≤ 1 (in the pass-
band), and when |Ω| > 1 (in the stopband) Cn =
cosh(n arccosh(Ω)), is a so called Chebyshev polyno-
mial of n-th order. The ripple factor e is a parameter,
not the natural number (2.71…). Chebyshev polynomi-
als can be computed recursively with the formula

Cn = 2ΩCn−1 − Cn−2,

and knowing that C1 = Ω and C2 = 2Ω2 − 1.
The idea is that in the passband the attenuation

is periodic and stays more or less constant, and in the
stopband the function is no longer periodic and damps

the frequencies. To find the ripple factor e given an
Amax

e =
√

10Amax/10 − 1,

and to find the order given two parameters

n =


arccosh

√
10Amin/10−1

10Amax −1

arccosh(ΩS/ΩD)

 .

Chebyshev II Also known as inverse Chebyshev be-
cause K(Ω2) = 1/e2C2

n(1/Ω).

Cauer

Part II
Mathematics
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