SigSys Zusammenfassung

Naoki Pross - naoki.pross@ost.ch

> HS2020 - FS2021

Contents

I Signals and Systems 1
1 Signals 1
1.1 Classification 1
1.2 Properties 1
1.3 Correlation 1
1.4 Amplitude density 1
2 LTI systems 1
2.1 Properties 1
2.2 Time domain description 2
2.3 Impulse response 2
2.4 Transfer function 2
2.5 Frequency response 2
2.6 Stability 2
2.7 Distortion 2
2.8 Stochastic inputs 2
3 State space representation 2
3.1 Canonical representations 3
3.1.1 Controllable form 3
3.1.2 Observable form 3
3.1.3 Diagonalized or Jordan form 3
3.2 Stability 3
3.3 Controllability 3
3.4 Observability 3
3.5 Solutions in time domain 3
3.6 Solutions in the s-domain 3
4 Filters 3
4.1 Normalized Frequency 3
4.2 LPF Approximations 4
II Mathematics 4

License

This work is licensed under a Creative Commons "Attribution-NonCommercialShareAlike 4.0 International" license.

Part I

Signals and Systems

1 Signals

1.1 Classification

1.2 Properties

For class 2 b signals the formula for class 2 a signals can used by taking $\lim _{T \rightarrow \infty} f_{2 \mathrm{a}}(T)$ (if the limits exists). The notation \int_{T} is short for an integral from $-T / 2$ to $T / 2$.

Characteristic Symbol and formula

Class 1 Signals
Normalized energy $\quad E_{n}=\lim _{T \rightarrow \infty} \int_{T}|x|^{2} d t$
Class 2a Signals
Normalized power $\quad P_{n}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T}|x|^{2} d t$
Linear mean $\quad X_{0}=\frac{1}{T} \int_{T} x d t$
Mean square
$X^{2}=\frac{1}{T} \int_{T} x^{2} d t$
n-th order mean $\quad X^{n}=\frac{1}{T} \int_{T} x^{n} d t$
Rectified value $|\bar{X}|=\frac{1}{T} \int_{T}|x| d t$

Variance $\sigma^{2}=\frac{1}{T} \int_{T}\left(x-X_{0}\right)^{2} d t$

$$
=X^{2}-X_{0}
$$

Root mean square $\quad X_{\mathrm{rms}}=\sqrt{X^{2}}$

1.3 Correlation

Autocorrelation The autocorrelation is a measure for how much a signal is coherent, i.e. how similar it is
to itself. For class 1 signals the autocorrelation is

$$
\varphi_{x x}(\tau)=\lim _{T \rightarrow \infty} \int_{T} x(t) x(t-\tau) d t
$$

whereas for class 2 a and 2 b signals

$$
\begin{gather*}
\varphi_{x x}(\tau)=\frac{1}{T} \int_{T} x(t) x(t-\tau) d t \\
\varphi_{x x}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(t) x(t-\tau) d t \tag{2b}
\end{gather*}
$$

Properties of $\varphi_{x x}$:

- $\varphi_{x x}(0)=X^{2}=\left(X_{0}\right)^{2}+\sigma^{2}$
- $\varphi_{x x}(0) \geq\left|\varphi_{x x}(\tau)\right|$
- $\varphi_{x x}(\tau) \geq\left(X_{0}\right)^{2}-\sigma^{2}$
- $\varphi_{x x}(\tau)=\varphi_{x x}(\tau+n T)$ (periodic)
- $\varphi_{x x}(\tau)=\varphi_{x x}(-\tau)$ (even, symmetric)

The Fourier transform of the autocorrelation $\Phi_{x x}(j \omega)=$ $\mathcal{F} \varphi_{x x}(t)$ is called energy spectral density (ESD) for class 1 signals or power spectral density (PSD) for class 2 signals.

Cross correlation The cross correlation measures the similarity of two different signals x and y. For class 1 signals

$$
\varphi_{x y}(\tau)=\lim _{T \rightarrow \infty} \int_{T} x(t) y(t-\tau) d t .
$$

Similarly for class 2 a and 2 b signals

$$
\begin{gather*}
\varphi_{x y}(\tau)=\frac{1}{T} \int_{T} x(t) y(t-\tau) d t \\
\varphi_{x y}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(t) y(t-\tau) d t \tag{2b}
\end{gather*}
$$

Properties of $\varphi_{x y}$:

- For signals with different frequencies $\varphi_{x y}$ is always 0 .
- For stochastic signals $\varphi_{x y}=0$

1.4 Amplitude density

The amplitude density is the probability that a signal has a certain amplitude during a time interval T.

$$
p(a)=\frac{1}{T} \frac{d t}{d x} \in[0,1]
$$

2 LTI systems

2.1 Properties

Let \mathcal{S} denote a system.

Property	Meaning
static \leftrightarrow dynamic	Static means that it is memo- ryless (in the statistical sense), whereas dynamic has memory. Static systems depend only on the input u, dynamic systems on $d u / d t$ or $\int u d t$.
causal \leftrightarrow	Causal systems use only informa- tions from the past, i.e. $h(t<$ acausal $0)=0$. Real systems are always causal.
linear \leftrightarrow	The output of a linear system does not have new frequency
	that were not in the input. For linear system the superposition principle is valid: $\mathcal{S}\left(\alpha_{1} x_{1}+\right.$ $\left.\alpha_{2} x_{2}\right)=\alpha_{1} \mathcal{S} x_{1}+\alpha_{2} \mathcal{S} x_{2}$.
time invariant	Time invariant systems do not depend on time, but for ex. only on time differences.
time variant	
SISO, MIMO	Single input single output, mul- tiple input multiple output.
	Bounded input bounded output, i.e. there are some A, B such that $\|x\|<A$ and $\|y\|<B$ for all t, equivalently $\int_{\mathbb{R}}\|h\| d t<\infty$.

2.2 Time domain description

A general LTI system with input x and output y is described in the time domain with a linear differential equation of the form

$$
\sum_{i=0}^{n} a_{i} y^{(i)}=\sum_{k=0}^{m} b_{k} x^{(k)} .
$$

2.3 Impulse response

2.4 Transfer function

By taking the Laplace transform of the differential equation of the system a and assuming all initial conditions to be zero, we obtain

$$
Y \sum_{i=0}^{n} a_{i} s^{i}=X \sum_{k=0}^{m} b_{k} s^{k},
$$

where Y and X are the Laplace transform of y and x respectively. We then define the transfer function to be the ratio $H=Y / X$, or

$$
H(s)=\frac{\sum_{k=0}^{m} b_{k} s^{k}}{\sum_{i=0}^{n} a_{i} s^{i}}=\frac{\prod_{k=0}^{m} s-z_{k}}{\prod_{i=0}^{n} s-p_{i}}
$$

since polynomials can be expressed in terms of their roots. We say the roots of Y are zeroes and those of X poles, because of how they appear in the complex plane of H.

2.5 Frequency response

2.6 Stability

Let \mathcal{S} be a system with impulse response $h(t)$ and transfer function $H(s)$.

Stable	All poles are on the LHP ${ }^{1}$. Marginally stable There are no poles in the RHP but a simple pole on the j-axis.
Instable	There are poles in the RHP or poles of hider order on the j - axis.

2.7 Distortion

For a periodic signal the Fourier transform is a bunch of weighted Dirac deltas (or a Fourier series), i.e.

$$
\mathcal{F}\{f\}=\sum_{i} d_{i} \delta\left(\omega-\omega_{i}\right)
$$

The spectrum of a sinusoidal signal of frequency ω_{1} is only one weighted delta $d_{1} \delta\left(\omega-\omega_{1}\right)$. When a system introduces a nonlinear distortion, with a clean sine input new higher harmonics are found in the output.

To measure the distortion of a signal in the English literature there is the total harmonic distortion (THD) defined as

$$
\mathrm{THD}=\frac{1}{d_{1}} \sqrt{\sum_{i=2}^{n} d_{i}^{2}}
$$

In the German literature there is the distortion factor (Klirrfaktor, always between 0 and 1)

$$
k=\sqrt{\frac{d_{2}^{2}+d_{3}^{2}+\cdots+d_{n}^{2}}{d_{1}^{2}+d_{2}^{2}+\cdots+d_{n}^{2}}}
$$

Both are usually given in percent (\%) and are related with

$$
(\mathrm{THD})^{2}=\frac{k^{2}}{1-k^{2}},
$$

thus THD $\geq k$.

2.8 Stochastic inputs

3 State space representation

Figure 1: Diagram of a LTI MIMO system with vector variables.

Symbol	Size	Name
\mathbf{x}	n	State vector
\mathbf{u}	m	Output vector
\mathbf{y}	k	Output vector
\mathbf{A}	$n \times n$	System matrix
\mathbf{B}	$m \times n$	Input matrix
\mathbf{C}	$n \times k$	Output matrix
\mathbf{D}	$k \times m$	Feed forward matrix

Table 1: Matrices for a state space representation

A system described by a system of linear differential equations of n-th order, can be equivalently be described by n first order differential equations. Which can be compactly written in matrix form as

$$
\begin{aligned}
\dot{\mathbf{x}} & =\mathbf{A x}+\mathbf{B u} \\
\mathbf{y} & =\mathbf{C x}+\mathbf{D u}
\end{aligned}
$$

If the system is time variant the matrices are functions of time.

3.1 Canonical representations

3.1.1 Controllable form

3.1.2 Observable form

3.1.3 Diagonalized or Jordan form

The Jordan form diagonalizes the A matrix. Thus we need to solve the eigenvalue problem $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$, which can be done by setting $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0$, and solving the characteristic polynomial. The eigenvectors are obtained by plugging the λ values back into ($\mathbf{A}-$ $\lambda \mathbf{I}) \mathbf{x}=\mathbf{0}$, and solving an overdetermined system of equations. Tip: for a 2×2 matrix \mathbf{A} the eigenvalues can be quickly calculated with

$$
m=\frac{1}{2} \operatorname{tr} \mathbf{A}=\frac{a+d}{2}, \quad p=\operatorname{det} \mathbf{A}=a d-b c
$$

and then $\lambda_{1,2}=m \pm \sqrt{m^{2}-p}$.
The transformation to the eigenbasis \mathbf{T}, obtained by using the eigenvector as columns of a matrix $\mathbf{T}=$ $\left[\begin{array}{lll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}\end{array}\right]$, is then used to compute

$$
\begin{array}{ll}
\hat{\mathbf{A}}=\mathbf{T A T}^{-1} & \hat{\mathbf{B}}=\mathbf{T B} \\
\hat{\mathbf{C}}=\mathbf{C T}^{-1} & \hat{\mathbf{D}}=\mathbf{D} .
\end{array}
$$

In this form the system is described with n decoupled states ξ_{i} with the equations $\dot{\boldsymbol{\xi}}=\hat{\mathbf{A}} \boldsymbol{\xi}+\hat{\mathbf{B}} \mathbf{u}$ and $\mathbf{y}=\hat{\mathbf{C}} \boldsymbol{\xi}+\hat{\mathbf{D}} \mathbf{u}$.

3.2 Stability

If all eigenvalues λ are not zero and have a positive real part the system is asymptotically stable. If all eigenvalues are not zero but at least one has a negative real part the system is unstable.

3.3 Controllability

The state controllability condition implies that it is possible - by admissible inputs - to steer the states from any initial value to any final value within some finite time window. A LTI state space model is controllable iff the matrix

$$
\mathbf{Q}=\left[\begin{array}{lll}
\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B} \cdots \mathbf{A}^{n-1} \mathbf{B}
\end{array}\right]
$$

has $\operatorname{rank} \mathbf{Q}=n$. For a SISO system, if all components of the vector $\hat{\mathbf{B}}$ are not zero, then the system is controllable.

3.4 Observability

Observability is a measure for how well internal states of a system can be inferred by knowledge of its external outputs. A LTI state space mode is observable iff the matrix

$$
\mathbf{Q}^{t}=\left[\begin{array}{llll}
\mathbf{C} & \mathbf{C A} & \cdots & \mathbf{C A}^{n-1}
\end{array}\right]
$$

has $\operatorname{rank} \mathbf{Q}=n$. For a SISO system it is also possible to infer observability from the diagonalized form: if all elements of the $\hat{\mathbf{C}}$ are not zero, then the system is observable.

3.5 Solutions in time domain

3.6 Solutions in the s-domain

By taking the Laplace transform of the system of differential equations we obtain

$$
\begin{aligned}
s \mathbf{X}-\mathbf{x}(0) & =\mathbf{A X}+\mathbf{B} \mathbf{U} \\
\mathbf{Y} & =\mathbf{C X}+\mathbf{D} \mathbf{U} .
\end{aligned}
$$

The first equation can be solved for \mathbf{X} giving

$$
\mathbf{X}=(s \mathbf{I}-A)^{-1}(\mathbf{x}(0)+\mathbf{B U}) .
$$

Substituting in the second equation results in

$$
\mathbf{Y}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1}(\mathbf{x}(0)+\mathbf{B U})+\mathbf{D U} .
$$

Assuming that the initial conditions $\mathbf{x}(0)=\mathbf{0}$, then

$$
\mathbf{Y}=\left(\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}\right) \mathbf{U}
$$

from which can define the transfer matrix \mathbf{H} to be the matrix that takes \mathbf{Y} to \mathbf{U}, i.e.

$$
\mathbf{H}=\mathbf{C}(s \mathbf{I}-\mathbf{A})^{-1} \mathbf{B}+\mathbf{D}
$$

that we can use to compute $y=\mathcal{L}^{-1}\{\mathbf{H} \mathcal{L} u\}$.
In the special case of a SISO system the transfer matrix \mathbf{H} is one dimensional and exactly equal to the transfer function H.

4 Filters

4.1 Normalized Frequency

For this section we will always use a normalized frequency $\Omega=\omega / \omega_{r}$ for some reference frequency ω_{r}. For TP and HP filters $\omega_{r}=\omega_{D}$ (cut-off frequency), whereas for BP and BS $\omega_{r}=\omega_{m}$ (frequency in the middle of the band).

4.2 LPF Approximations

The approximations of ideal low pass filters generally have (with some exceptions) the form

$$
|H(j \Omega)|^{2}=H(j \Omega) \cdot H^{*}(j \Omega)=\frac{1}{1+K\left(\Omega^{2}\right)}
$$

where K is the so called charcteristic function. For a nicer notation we will define the attenuation function

$$
A(\Omega)=10 \log \left(|H(j \Omega)|^{-2}\right), \quad[A]=\mathrm{dB}
$$

With that, ideally wish to have an approximation that satisfies the following requirements:

- $A(\Omega=0)=1=0 \mathrm{~dB}$
- $A(\Omega=1)=1 / \sqrt{2} \approx-3 \mathrm{~dB}$
- $A(\Omega \rightarrow \infty)=0$

Critically damped filter

Butterworth Let $K\left(\Omega^{2}\right)=\Omega^{2 n}$, thus

$$
A(\Omega)=10 \log \left(1+\Omega^{2 n}\right) .
$$

To find the order of the filter given two parameters the formula is

$$
n=\left\lceil\frac{1}{2} \log \left(\frac{10^{A_{\min } / 10}-1}{10^{A_{\max } / 10}-1}-\frac{\Omega_{S}}{\Omega_{D}}\right)\right\rceil .
$$

Chebyshev I Let $K\left(\Omega^{2}\right)=e^{2} C_{n}^{2}(\Omega)$, so

$$
A(\Omega)=10 \log \left(1+e^{2} C_{n}^{2}(\Omega)\right)
$$

where $C_{n}=\cos (n \arccos (\Omega))$ for $|\Omega| \leq 1$ (in the passband), and when $|\Omega|>1$ (in the stopband) $C_{n}=$ $\cosh (n \operatorname{arccosh}(\Omega))$, is a so called Chebyshev polynomial of n-th order. The ripple factor e is a parameter, not the natural number (2.71...). Chebyshev polynomials can be computed recursively with the formula

$$
C_{n}=2 \Omega C_{n-1}-C_{n-2},
$$

and knowing that $C_{1}=\Omega$ and $C_{2}=2 \Omega^{2}-1$.
The idea is that in the passband the attenuation is periodic and stays more or less constant, and in the stopband the function is no longer periodic and damps
-

號
the frequencies. To find the ripple factor e given an $A_{\text {max }}$

$$
e=\sqrt{10^{A_{\max } / 10}-1}
$$

and to find the order given two parameters

$$
n=\left\lceil\frac{\operatorname{arccosh} \sqrt{\frac{10^{A_{\min } / 10}-1}{10^{4 \max -1}}}}{\operatorname{arccosh}\left(\Omega_{S} / \Omega_{D}\right)}\right\rceil .
$$

Chebyshev II Also known as inverse Chebyshev because $K\left(\Omega^{2}\right)=1 / e^{2} C_{n}^{2}(1 / \Omega)$.

Cauer

Part II

Mathematics

