SigSys Zusammenfassung

$Naoki\ Pross-{\tt naoki.pross@ost.ch}$

HS2020-FS2021

Contents

Ι	Signals and Systems	1
1	Signals	1
	1.1 Classification	1
	1.2 Properties	1
	1.3 Correlation	1
	1.4 Amplitude density	1
2	LTI systems	1
	2.1 Properties	1
	2.2 Impulse response	2
	2.3 Stability	2
	2.4 Distortion	2
	2.5 Stochastic inputs	2
3	Frequency response of LTI systems	2
4	State space representation	2
	4.1 Canonical representations	2
	4.1.1 Controllable form	2
	4.1.2 Observable form	2
	4.1.3 Diagonalized or Jordan form	2
	4.2 Stability	2
	4.3 Controllability	2
	4.4 Observability	3
	4.5 Solutions in time domain	3
	4.6 Solutions in frequency domain	3
5	Filters	3
II	Mathematics	3

License

This work is licensed under a Creative Commons "Attribution-NonCommercial-ShareAlike 4.0 International" license.

Part I

Signals and Systems

1 Signals

1.1 Classification

1.2 Properties

For class 2b signals the formula for class 2a signals can used by taking $\lim_{T\to\infty} f_{2a}(T)$ (if the limits exists). The notation \int_T is short for an integral from -T/2 to T/2.

Characteristic	Symbol and formula
Class 1 Signals	
Normalized energy	$E_n = \lim_{T \to \infty} \int_T x ^2 dt$
Class 2a Signals	31
Normalized power	$P_n = \lim_{T \to \infty} \frac{1}{T} \int_T x ^2 dt$
Linear mean	$X_0 = \frac{1}{T} \int_T x dt$
Mean square	$X^2 = \frac{1}{T} \int_T x^2 dt$
<i>n</i> -th order mean	$X^n = \frac{1}{T} \int_T x^n dt$
Rectified value	$ \bar{X} = \frac{1}{T} \int_{T} x dt$
Variance	$\sigma^2 = \frac{1}{T} \int_T (x - X_0)^2 dt$
	$= X^2 - X_0$
Root mean square	$X_{\rm rms} = \sqrt{X^2}$

1.3 Correlation

Autocorrelation The *autocorrelation* is a measure for how much a signal is coherent, i.e. how similar it is

to itself. For class 1 signals the autocorrelation is

$$\varphi_{xx}(\tau) = \lim_{T \to \infty} \int_T x(t)x(t-\tau) dt,$$

whereas for class 2a and 2b signals

$$\varphi_{xx}(\tau) = \frac{1}{T} \int_{T} x(t)x(t-\tau) dt \quad \text{(2a)},$$

$$\varphi_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{T} x(t)x(t-\tau) dt \quad \text{(2b)}.$$

Properties of φ_{xx} :

•
$$\varphi_{xx}(0) = X^2 = (X_0)^2 + \sigma^2$$

•
$$\varphi_{xx}(0) \ge |\varphi_{xx}(\tau)|$$

•
$$\varphi_{xx}(\tau) \geq (X_0)^2 - \sigma^2$$

•
$$\varphi_{xx}(\tau) = \varphi_{xx}(\tau + nT)$$
 (periodic)

•
$$\varphi_{xx}(\tau) = \varphi_{xx}(-\tau)$$
 (even, symmetric)

The Fourier transform of the autocorrelation $\Phi_{xx}(j\omega) = \mathcal{F} \varphi_{xx}(t)$ is called energy spectral density (ESD) for class 1 signals or power spectral density (PSD) for class 2 signals.

Cross correlation The cross correlation measures the similarity of two different signals x and y. For class 1 signals

$$\varphi_{xy}(\tau) = \lim_{T \to \infty} \int_T x(t)y(t-\tau) dt.$$

Similarly for class 2a and 2b signals

$$\varphi_{xy}(\tau) = \frac{1}{T} \int_{T} x(t)y(t-\tau) dt \quad (2a),$$

$$\varphi_{xy}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{T} x(t)y(t-\tau) dt \quad (2b).$$

Properties of φ_{xy} :

- For signals with different frequencies φ_{xy} is always 0.
- For stochastic signals $\varphi_{xy} = 0$

1.4 Amplitude density

The amplitude density is the probability that a signal has a certain amplitude during a time interval T.

$$p(a) = \frac{1}{T} \frac{dt}{dx} \in [0, 1]$$

2 LTI systems

2.1 Properties

Let S denote a system.

Property	Meaning
$\mathrm{static} \leftrightarrow$	Static means that it is memo-
dynamic	ryless (in the statistical sense),
	whereas dynamic has memory.
	Static systems depend only on
	the input u , dynamic systems on
	du/dt or $\int u dt$.
$causal \leftrightarrow$	Causal systems use only informa-
acausal	tions from the past, i.e. $h(t <$
	0) = 0. Real systems are always
	causal.
$linear \leftrightarrow$	The output of a linear system
nonlinear	does not have new frequency
	that were not in the input. For
	linear system the superposition
	principle is valid: $S(\alpha_1 x_1 + \alpha_2 x_2)$
	$\alpha_2 x_2) = \alpha_1 \mathcal{S} x_1 + \alpha_2 \mathcal{S} x_2.$
time invariant	Time invariant systems do not
\leftrightarrow time variant	depend on time, but for ex. only
	on time differences.
SISO, MIMO	Single input single output, mul-
	tiple input multiple output.
BIBO	Bounded input bounded output,
	i.e. there are some A , B such
	that $ x < A$ and $ y < B$ for all
	t , equivalently $\int_{\mathbb{R}} h dt < \infty$.

2.2 Impulse response

2.3 Stability

Let S be a system with impulse response h(t) and transfer function H(s).

Stable	All poles are on the LHP ¹ .
Marginally stable	There are no poles in the RHP
	but a simple pole on the j -axis.
Instable	There are poles in the RHP or
	poles of hider order on the j -
	axis.

2.4 Distortion

2.5 Stochastic inputs

3 Frequency response of LTI systems

4 State space representation

A system described by a system of linear differential equations of n-th order, can be equivalently be described by n first order differential equations. Which can be compactly written in matrix form as

$$\begin{aligned} \dot{\mathbf{x}} &= \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \\ \mathbf{y} &= \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}. \end{aligned}$$

Figure 1: A LTI MIMO system.

Symbol	Size	Name
x	n	State vector
\mathbf{u}	m	Output vector
\mathbf{y}	k	Output vector
A	$n \times n$	System matrix
${f B}$	$m \times n$	Input matrix
\mathbf{C}	$n \times k$	Output matrix
\mathbf{D}	$k \times m$	Feed forward matrix

Table 1: Matrices for a state space representation

If the system is time variant the matrices are functions of time.

4.1 Canonical representations

4.1.1 Controllable form

4.1.2 Observable form

4.1.3 Diagonalized or Jordan form

The Jordan form diagonalizes the **A** matrix. Thus we need to solve the eigenvalue problem $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$, which can be done by setting $\det(\mathbf{A} - \lambda \mathbf{I}) = 0$, and solving the characteristic polynomial. The eigenvectors are obtained by plugging the λ values back into $(\mathbf{A} - \lambda \mathbf{I})\mathbf{x} = \mathbf{0}$, and solving an overdetermined system of equations.

The transformation to the eigenbasis \mathbf{T} , obtained by using the eigenvector as columns of a matrix $\mathbf{T} = [\mathbf{v}_1 \ \cdots \ \mathbf{v}_n]$, is then used to compute

$$\begin{split} \mathbf{\hat{A}} &= \mathbf{T}\mathbf{A}\mathbf{T}^{-1} & \qquad \mathbf{\hat{B}} &= \mathbf{T}\mathbf{B} \\ \mathbf{\hat{C}} &= \mathbf{C}\mathbf{T}^{-1} & \qquad \mathbf{\hat{D}} &= \mathbf{D}. \end{split}$$

In this form the system is described with n decoupled states ξ_i with the equations $\dot{\boldsymbol{\xi}} = \hat{\mathbf{A}}\boldsymbol{\xi} + \hat{\mathbf{B}}\mathbf{u}$ and $\mathbf{y} = \hat{\mathbf{C}}\boldsymbol{\xi} + \hat{\mathbf{D}}\mathbf{u}$.

4.2 Stability

If all eigenvalues λ are not zero and have a positive real part the system is asymptotically stable. If all eigenvalues are not zero but at least one has a negative real part the system is unstable.

4.3 Controllability

The state controllability condition implies that it is possible — by admissible inputs — to steer the states

from any initial value to any final value within some finite time window. A LTI state space model is controllable iff the matrix

$$\mathbf{Q} = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^2\mathbf{B}\cdots\mathbf{A}^{n-1}\mathbf{B} \end{bmatrix}$$

has rank $\mathbf{Q} = n$. Or equivalently for a SISO system, if all components of the vector $\hat{\mathbf{C}}_i \neq 0$.

4.4 Observability

Observability is a measure for how well internal states of a system can be inferred by knowledge of its external outputs. A LTI state space mode is observable iff the matrix

$$\mathbf{Q}^t = \begin{bmatrix} \mathbf{C} & \mathbf{C}\mathbf{A} & \cdots & \mathbf{C}\mathbf{A}^{n-1} \end{bmatrix}$$

has rank $\mathbf{Q} = n$.

- 4.5 Solutions in time domain
- 4.6 Solutions in frequency domain
- 5 Filters

Part II

Mathematics