Signale und Systeme HS2012/FS2013

Tabea Méndez

HSR Hochschule für Technik Rapperswil Elektrotechnik

Rapperswil, 26. August 2013

Dieses Dokument wurde mit LATEXgesetzt.

© by Tabea Méndez.

Der Inhalt dieses Werkes wurde sorgfältig erarbeitet. Dennoch übernimmt der Autor für die Richtigkeit von Angaben und Hinweisen keine Haftung. Dieses Dokument wurde komplett auf Freeware geschrieben. Die Bilder wurden mit GIMP, InkScape und Tikz erstellt/editiert. Für geometrische Darstellungen oder Visualisierungen von Lösungen, wurde Geogebra, GNUPlot und Tikz verwendet.

Inhaltsverzeichnis

1	Signalbeschreibung 1.1 Signalklassen 1.2 Signale im Zeitbereich 1.3 Amplidutenanalyse vom Signalen	5 5 6 8
2	Frequenzanalyse 2.1 Fourier-Reihen periodischer Funktionen 2.2 Fourier-Integral - Fourier-Transformation 2.3 Leistungs-/Energiedichtespektrum 2.4 Laplace-Transformation	11 11 14 15 16
	2.5 Zusammenhang Fourier-/Laplace-Transformation 2.6 Faltung	$\frac{17}{17}$
3	Systembeschreibung 3.1 Begriffe 3.2 LTI-Systeme (linear-time-invariant-Systems) 3.3 Phasen- und Gruppenlaufzeit 3.4 Verzerrungen 3.5 Übertragung von stochastischen Signalen	 18 19 20 20 21
4	Frequenzverhalten von analogen LTI-Systemen 4.1 Dämpfung und Verstärkung 4.2 Relative und Absolute Pegel 4.3 Übertragungsfunktion → Frequenzgang 4.4 Pol- und Nullstellen, Pol- und Nullstellenfrequenz/güte 4.5 Pol/Nullstellendiagramm → Frequenzgang 4.6 Minimalphasennetzwerke 4.7 Bode-Diagramm 4.8 Ortskurve (Nyquist-Diagramm) und Nichols-Diagramm 4.9 Stabilität	 22 22 23 23 23 24 24 28 29
5	Signalflussdiagramme 5.1 Definitionen 5.2 Konstruktionsregeln 5.3 Reduktionsregeln 5.4 Mason's Regel 5.5 Fundamentale Signalflussdiagramme 5.6 Operationsverstärker als Signalflussdiagrammes 5.7 Inversion eines Signalflussdiagrammes	 30 30 30 30 32 32 32 32 33 33

	5.9	Skalierung eines Signalflussdiagrammes	33
6	Zus	tandsraumdarstellung	35
	6.1	Blockdiagramm und Matrizen	35
	6.2	Äquivalente Zustandsraumdarstellung	35
	6.3	Lösung der Zustandsgleichung im Zeitbereich	36
	6.4	Lösung der Zustandsgleichung im Bildbereich (Frequenzbereich)	36
	6.5	Bestimmung der Zustandsraumdarstellung aus der allgemeinen Übertragungsfunktion	36
	6.6	Stabilität	39
	6.7	Beobachtbarkeit und Steuerbarkeit	40
7	Filte	ertheorie	41
	7.1	Realisierung von analogen Filtern	41
	7.2	Das Toleranzschema	41
	7.3	Frequenznormierung	41
	7.4	Filtertransformationen	41
	7.5	Tiefpass - Filter - Approximationen	44
	7.6	Entwurf von LC-Filtern	47

1 Signalbeschreibung

Signalbeschreibung ist eine abstrakte Beschreibung einer (veränderlichen) Grösse.

1.1 Signalklassen

Signale können klassiert werden in:

wert-/zeitkontinuierlich	\Leftrightarrow	wert-/zeitdiskret
periodisch	\Leftrightarrow	aperiodisch
deterministisch	\Leftrightarrow	stochastisch
kausal	\Leftrightarrow	akausal
Energiesignal	\Leftrightarrow	Leistungssignal
analog	\Leftrightarrow	digital (zeitdiskret & wertdiskret)
reell	\Leftrightarrow	komplex
eindimensional	\Leftrightarrow	mehrdimensional

oder mehr von **praktischen Bedeutung** in:

Nachrichtensignal:	- Trägt Information	
	- nicht deterministisch	
Hilfssignal:	- Für das Funktionieren eines Übertragungssystems	
	- meist periodisch	
Störsignal:	- Beeinträchtigt Information (unerwünscht)	
	- deterministisch oder stochastisch (z.B. Rauschen)	

1.2 Signale im Zeitbereich

Kenngrösse	Formel	Bemerkung
$E_n \ / \ W_n$: normierte Signalenergie	$W_n = \lim_{T \to \infty} \int_{-T/2}^{T/2} f(t) ^2 dt$	
P_n : normierte Signalleistung	$P_n = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} f(t) ^2 dt$	
$X_0 \ / \ \overline{X}$: linearer Mittelwert	$X_0 = \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt$	• Für Signale der Klasse 2a
X^2 : quadratischer Mittelwert	$X^{2} = \frac{1}{T} \int_{-T/2}^{T/2} x^{2}(t) dt$	Für Signale der Klasse 2aLeistung des SignalsMean Square
X_{eff} : Effektivwert	$X_{eff} = \sqrt{X^2}$	• RMS: Root Mean Square • Mass für Leistung
X^n : Mittelwert n-ter Ordnung	$X^{n} = \frac{1}{T} \int_{-T/2}^{T/2} x^{n}(t) dt$	• Für Signale der Klasse 2a
Var(x): Varianz	$Var(x) = \frac{1}{T} \int_{-T/2}^{T/2} (x(t) - X_0)^2 dt$	 Mittlere Quadratische Abweichung vom Mittelwert 1. zentrales Moment
σ : Standardabweichung	$\sigma = \sqrt{Var(x)}$	
Zusammenhang $Var(x), X^2, X_0$	$Var(x) = \sigma^2 = X^2 - (X_0)^2$	

Für Signale der Klasse 2b (aperiodische Leistungssignale) lassen sich Mittelwerte usw. im Allgemeinen mit dem Übergang $\lim_{T\to\infty}$ aus den Ausdrücken für die Signale der Klasse 2a berechnen!

1.2.1 Autokorrelationsfunktion (AKF)

Die Autokorrelation ist ein Mass für die Kohärenz eines Signals (Ähnlichkeit des Signals zu sich selbst): \Rightarrow "Wie weit hängen zeitlich verschobene Signalteile zusammen?"

Definition für periodische **Leistungssignale** (Klasse 2a):

$$\varphi_{xx}(\tau) = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot x(t-\tau) \, dt = \frac{1}{T} \int_{-T/2}^{T/2} x(t+\tau) \cdot x(t) \, dt = \varphi_{xx}(-\tau)$$

 \Rightarrow für aperiodische Leistungssignale (Klasse 2b):

$$\varphi_{xx}(\tau) = \lim_{T \to \infty} \dots$$

Definition für **Energiesignale** (Klasse 1):

$$\varphi_{xx}(\tau) = \lim_{T \to \infty} \int_{-T/2}^{T/2} x(t) \cdot x(t-\tau) dt = \lim_{T \to \infty} \int_{-T/2}^{T/2} x(t+\tau) \cdot x(t) dt = \varphi_{xx}(-\tau)$$

Eigenschaften der Autokorrelation

- Erweiterung des Quadratischen Mittelwertes: $\varphi_{xx}(0) = X^2$
- periodisch mit gleicher Periode wie das Signal: $\varphi_{xx}(\tau) = \varphi_{xx}(\tau \pm mT)$
- gerade Function: $\varphi_{xx}(\tau) = \varphi_{xx}(-\tau)$
- Hat bei $\varphi_{xx}(0)$ den grössten Wert: $\varphi_{xx}(0) \ge |\varphi_{xx}(\tau)|$
- $\varphi_{xx}(\tau) \ge (X_0)^2 \sigma^2$

 $\varphi_{xy}(\tau)$

Kreuzkorrelation

t

1.2.2 Kreuzkorrelationsfunktion (KKF)

Die Kreuzkorrelation ist ein Mass für die Ähnlichkeit von zwei verschiedenen Signalen.

Definition für periodische Leistungssignale (Klasse 2a):

$$\varphi_{xy}(\tau) = \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot y(t-\tau) \, dt = \frac{1}{T} \int_{-T/2}^{T/2} x(t+\tau) \cdot y(t) \, dt$$

⇒ für aperiodische Leistungssignale (Klasse 2b): $\varphi_{xy}(\tau) = \lim_{T \to \infty} \dots$

t

Definition für **Energiesignale** (Klasse 1):

$$\varphi_{xy}(\tau) = \lim_{T \to \infty} \int_{-T/2}^{T/2} x(t) \cdot y(t-\tau) dt = \lim_{T \to \infty} \int_{-T/2}^{T/2} x(t+\tau) \cdot y(t) dt$$

1.2.3 Komplexe Frequenzen

1.2.4 Impulsfunktion $\delta(t)$

Die Impulsfunktion $\delta(t)$ ist keine Funktion im eigentlichen Sinne, jedoch gibt es Regeln, so dass man mit $\delta(t)$ wie mit einer Funktion arbeiten kann.

Sie wird auch Dirac-Impuls oder Delta-Impuls genannt und ist eine zentrale Testfunktion!

$\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & \text{sonst} \end{cases} \qquad \qquad \int_{-\infty}^{\infty} \delta(t) dt = 1$	$1 \xrightarrow{\delta(t)} t \xrightarrow{1} \xrightarrow{\delta(t-t_0)} t$
Siebungseigenschaft von $\delta(t)$	$\int_{-\infty}^{\infty} \delta(t - t_0) \cdot f(t) dt = f(t_0)$
Zusammenhang Einheitssprung $u(t)$ und $\delta(t)$	$\delta(t) = rac{du(t)}{dt}$ bzw. $\int_{-\infty}^{t} \delta(\tau) d\tau = u(t)$

weitere Eigenschaften des Dirac-Impuls $\delta(t)$:

$\delta(t) = \delta(-t)$	gerade "Funktion"	$\delta(t - t_0) * f(t) = f(t - t_0)$	Faltung
$\delta(t-t_0) = \delta(-t+t_0)$	symmetrisch	$\delta(t-t_1) * \delta(t-t_2) = \delta(t-t_1-t_2)$	Faltung
$\delta(at) = \frac{1}{ a }\delta(t)$	Skalierung	$\delta(t - t_0) f(t) = f(t_0) \delta(t - t_0)$	Abtastung
$\delta(\frac{t-t_0}{a}) = a \delta(t-t_0)$	Skalierung und Verschiebung	$\delta(t) = \lim_{\omega \to \infty} \frac{\sin(\omega t)}{\pi t}$	Definition

1.2.5 Grundlegende Funktionen

1.2.6 Signalmanipulation

Spiegelp		Strecken	Stauchen	Verschieben um c	
	Spiegeni	um Faktor a	um Faktor a	nach Rechts/oben	nach Links/unten
x-Achse (Abszisse)	-f(x)	$f\left(\frac{1}{a}\cdot x\right)$	$f(a \cdot x)$	f(x-c)	f(x+c)
y-Achse (Ordinate)	f(-x)	$a \cdot f(x)$	$\frac{1}{a} \cdot f(x)$	f(x) + c	f(x) - c

1.2.7 Rauschen

Weises Rauschen ist gleichverteilt, über alle Frequenzen.

Rauschleistung, Rauschspannung:

Thermisch bedingte Rauschspannung von Widerständen:

effektive Rauschleistung:

effektive Rauschspannung:

- Bolzmann-Konstante: $k = 1.380662 \cdot 10^{-23} \frac{J}{K}$
- absolute Temperatur T in Kelvin! $(0^{\circ}C = 273, 15K)$
- Bandbreite Δf

Signal-Rausch-Verhältnis (SNR):

Zur Qualitätsbewertung von Signalen wird das Verhältnis zwischen der Leistung des Nutzsignales P_s und der des Rauschsignales P_r gebildet:

$$a_r = 10 \cdot \log_{10} \left(\frac{P_s}{P_r}\right) = 20 \cdot \log_{10} \left(\frac{U_s}{U_r}\right)$$

Auch Stör-oder Rauschabstand gennant.

Rauschfreie Übertragung für

- Musik und Sprache: $a_r \ge 30 dB$

- Bilder:
$$a_r \ge 40 dB$$

1.3 Amplidutenanalyse vom Signalen

1.3.1 Amplitudendichte

Relative Zeit, während der sich ein Signal in einem bestimmten Amplitudenintervall aufhält:

Eigenschaften der Amplitudendichte:

	1
Wertebereich:	$0 \le p(a) \le 1 \qquad \forall a$
Gesammtwahrscheinlichkeit:	$\int_{-\infty}^{\infty} p(a) da = 1$
Wahrscheinlichkeit $a_1 < a < a_2$:	$P(a_1 < a < a_2) = \int_{a_1}^{a_2} p(a) da$
X_0 : linearer Mittelwert	$X_0 = \int_{-\infty}^{\infty} a \cdot p(a) da$
X^n : Mittelwert $n - ter$ Ordnung	$X^n = \int_{-\infty}^{\infty} a^n \cdot p(a) da$
Var(x): Varianz von $x(t)$	$Var(x) = \int_{-\infty}^{\infty} (a - X_0)^2 \cdot p(a) da$

1.3.2 Stochastische Signale

Stochastische Signale sind schwach stationär (Linearer Mittelwert x_0 und Autokorrelation $\varphi_{xx}(t)$ hängen nicht von der Zeit t ab) und können nur durch **Wahrscheinlichkeitsverteilungen** beschrieben werden.

1.3.2.1 Gauss-Verteilung, Normalverteilung $N(\mu, \sigma)$

1.3.3 Addition von zwei stochastischen Signalen

Zentraler Grenzwertsatz

Werden n unabhängige Amplitudendichten $p_i(a)$ miteinander gefaltet dann geht die resultierende Amplitudendichte $p(a) = p_1(a) * p_2(a) * ... p_n(a)$ für $n \to \infty$ gegen die Normalverteilung.

$$N(\mu_1, \sigma_1) * N(\mu_2, \sigma_2) = N\left(\underbrace{\mu_1 + \mu_2}_{\mu}, \underbrace{\sqrt{\sigma_1^2 + \sigma_2^2}}_{\sigma}\right)$$

1.3.3.1 Q-Funktion

Q-Funktion:

$$Q(\xi) = \frac{1}{\sqrt{2\pi}} \int_{\xi}^{\infty} e^{\frac{-y^2}{2}} dy$$
$$Q(\xi) = 1 - Q(-\xi) = \frac{1}{2} \operatorname{erfc}\left(\frac{\xi}{\sqrt{2}}\right) = \frac{1}{2} \left(1 - \operatorname{erf}\left(\frac{\xi}{\sqrt{2}}\right)\right)$$
$$\operatorname{erf}(\xi) = \frac{2}{\sqrt{\pi}} \int_{0}^{\xi} e^{-y^2} dy$$
$$\operatorname{erfc}(\xi) = 1 - \operatorname{erf}(\xi) = \frac{2}{\sqrt{\pi}} \int_{\xi}^{\infty} e^{-y^2} dy$$

Fehlerfunktion:

komplementäre Fehlerfunktion:

2 Frequenzanalyse

2.1 Fourier-Reihen periodischer Funktionen

Idee:

T-**Periodische Funktionen** durch Aufsummieren ebenfalls periodischer Basisfunktionen (sin, cos) zu approximieren.

Frequenz: $f = \frac{1}{T}$ Kreisfrequenz: $\omega_f = 2\pi f$ Periodendauer: $T = \frac{2\pi}{\omega_f}$ Nullphasenwinkel: φ

2.1.1 Darstellung mit Sinus- und Cosinusschwingungen

Die Funktion f(t) soll durch folgende Linearkombination dargestellt werden:

$$\operatorname{FR}[f(t)] = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cdot \cos(n\omega_f t) + b_n \cdot \sin(n\omega_f t) \right]$$

Berechnung von a_0 , a_n und b_n (Fourierkoeffizienten): Orthogonalit "ats be ziehung en:

2.1.2 Sätze zur Berechnung der Fourierkoeffizienten

2.1.2.1 Symmetrie

Gerade Funktion	Ungerade Funktion
achssymmetrisch	punktsymmetrisch
f(t) = f(-t)	f(t) = -f(-t)
Beispiel: cos	Beispiel: sin
$\int_{0}^{T} f(t) dt = 2 \int_{0}^{T/2} f(t) dt$	$\int_{0}^{T} f(t) dt = 0$

Rechnen mit geraden und ungeraden Funktionen:

gerade	•	gerade	=	gerade
ungerade	•	ungerade	=	gerade
gerade	•	ungerade	=	ungerade

Fourierkoeffizienten a_n, b_n :

f(t)	a_n, b_n	
gerade	$b_n = 0$;	$a_n = \frac{4}{T} \int_{0}^{T/2} f(t) \cdot \cos(n\omega_f t) dt$
ungerade	$a_n = 0 ;$	$b_n = \frac{4}{T} \int_{0}^{T/2} f(t) \cdot \sin(n\omega_f t) dt$

2.1.2.2 Linearität

f(t), g(t) und h(t) sind T-periodische Funktionen.

Wenn gilt:

$$\begin{array}{c}
 h(t) = r \cdot f(t) + s \cdot g(t) \\
 b_n^{(h)} = r \cdot a_n^{(f)} + s \cdot a_n^{(g)} \\
 b_n^{(h)} = r \cdot b_n^{(f)} + s \cdot b_n^{(g)} \\
 \end{array} \qquad r, s \in \mathbb{R}$$

2.1.2.3 Streckung / Stauchung

f(t)ist eine T-periodische Funktionen und g(t) eine $\frac{T}{r}\text{-periodische Funktion}$

$$\Rightarrow \quad g(t) = f(r \cdot t) \quad \Rightarrow \quad \begin{bmatrix} a_n^{(g)} = a_n^{(f)} \\ b_n^{(g)} = b_n^{(f)} \end{bmatrix} \quad 0 < r \in \mathbb{R} \quad \Rightarrow \begin{cases} r < 1 \to \text{Streckung} \\ r > 1 \to \text{Stauchung} \end{cases} \quad \text{und} \quad \boxed{\omega_g = \frac{2\pi r}{T} = \omega_f \cdot r}$$

2.1.2.4 Verschiebung

g(t) ist eine von f(t) um t_0 verschobene T-periodische Funktion $\Rightarrow \begin{cases} f(t+t_0) \rightarrow \text{Verschiebung nach links} \\ f(t-t_0) \rightarrow \text{Verschiebung nach rechts} \end{cases}$

$$\Rightarrow \quad g(t) = f(t+t_0) \quad \Rightarrow \quad \frac{a_n^{(g)} = \cos(n\omega_f t_0) \cdot a_n^{(f)} + \sin(n\omega_f t_0) \cdot b_n^{(f)}; \quad b_0 = 0}{b_n^{(g)} = -\sin(n\omega_f t_0) \cdot a_n^{(f)} + \cos(n\omega_f t_0) \cdot b_n^{(f)}}$$

2.1.3 Komplexe Darstellung der Fourierreihen

Ausgehend von den Eulerschen Formeln kann man die Fourierreihe mit Exponentialfunktionen anstelle von

Winkelfunktionen formulieren:

$$\sin(\alpha) = \frac{e^{j\alpha} - e^{-j\alpha}}{2j} \qquad \boxed{\cos(\alpha) = \frac{e^{j\alpha} + e^{-j\alpha}}{2}}$$

Komplexe Fourierreihe:

$$\sum_{k=-\infty}^{\infty} c_k \cdot \mathrm{e}^{\mathrm{j}k\omega_f t}$$

Umrechnungsformeln $(a_n, b_n \rightarrow c_n)$:

$$c_n = \frac{a_n - jb_n}{2} \quad \text{für } n = 0, 1, 2, 3, \dots (b_0 = 0)$$
$$c_{-n} = \frac{a_n + jb_n}{2} = \overline{c_n} \quad \text{für } n = 1, 2, 3, \dots$$

Komplexe Fourierkoeffizienten:

$$c_n = \overline{c_{-n}} = \frac{1}{T} \cdot \int_0^T f(t) \cdot e^{-jn\omega_f t} dt$$

Umrechnungsformeln
$$(c_n \rightarrow a_n, b_n)$$
:

$$a_n = 2\text{Re}(c_n) = c_n + c_{-n} \quad \text{für } n = 0, 1, 2, 3, \dots$$
$$b_n = -2\text{Im}(c_n) = j(c_n - c_{-n}) \quad \text{für } n = 1, 2, 3, \dots$$

2.1.3.1 Sätze zur Berechnung komplexer Fourierkoeffizienten

Symmetrie:

f(t)	c_k	$\arg(c_k)$
gerade	$\operatorname{Im}[c_k] = 0 ;$	$\arg(c_k) = 0 \text{ oder } \pi$
ungerade	$\operatorname{Re}[c_k] = 0 ;$	$\arg(c_k) = \pm \frac{\pi}{2}$

Streckung / Stauchung:

g(t

$$) = f(r \cdot t)$$
 $0 < r \in \mathbb{R}$

 ω_f .

$$\Rightarrow \quad \boxed{c_k^{(g)} = c_k^{(f)}} \quad \text{und} \quad \boxed{\omega_g = \frac{2\pi r}{T}} =$$

2.1.4 Gibbs-Phänomen

Gibbs'sches Phänomen:

"Über- und Unterschiessen" vor und nach einer Sprungstelle.

Höhe der grössten überschwingenden Welle:

Etwa 9% (8.94..%) der gesamten Sprunghöhe.

Anzahl Summanden
$$m \to \infty$$
:

Grösste überschwingende Welle $\approx 9\%$, klingt aber schneller aus.

2.1.5 Punktweise Konvergenz von Fourierreihen

- Funktion f(t) ist T-periodisch und stückweise stetig mit Limes.
- Rechts- und linksseitige Ableitungen $\lim_{t\downarrow t_0} f'(t)$, $\lim_{t\uparrow t_0} f'(t)$ existieren.

Wenn gilt:
$$h(t) = r \cdot f(t) + s \cdot g(t)$$

$$\Rightarrow \quad c_k^{(h)} = r \cdot c_k^{(f)} + s \cdot c_k^{(g)} \quad r, s \in \mathbb{R}$$

Verschiebung:

Linearität

Wenn gilt:
$$g(t) = f(t + t_0)$$

 $\Rightarrow \quad c_k^{(g)} = e^{jk\omega_f t_0} \cdot c_k^{(f)} \quad k \in \mathbb{Z}$

2.1.6 Spektraldarstellungen

2.1.6.1 Einseitiges Kosinus- und Sinusamplitudendiagramm

2.1.6.2 Einseitiges Amplituden-/Phasendiagramm

Werte der reellen Fourierkoeffizienten a_n und b_n werden als "Säulen" dargestellt.

Fourierreihe des abgebildeten Beispiels:

$$f(t) = \sum_{k=1}^{\infty} \frac{1}{2k-1} \cdot \sin((2k-1) \cdot t)$$

Nachteil: Diagramme sind vom Ort des Nullpunktes auf der Zeitachse abhängig.

Gleichfrequente Schwingungen werden zu phasenverschobenen Kosinusschwingungen zusammengefasst:

$$a_n \cos(n\omega_f t) + b_n \sin(n\omega_f t) = A_n \cos(n\omega_f t + \varphi_n)$$

$$A_n = |a_n - jb_n| = \sqrt{a_n^2 + b_n^2} \quad \varphi_n = \arg(a_n - jb_n)$$

$$A_0 = \left|\frac{a_0}{2}\right| \quad \varphi_0 = \begin{cases} 0, & a_0 \ge 0\\ \pi, & a_0 < 0 \end{cases}$$

2.1.6.3 Zweiseitiges Kosinus- und Sinusamplitudendiagramm

Gleich wie Einseitiges Kosinus- und Sinusamplitudendiagramm jedoch nur halb so grosse Amplituden.

$a_{++} = \frac{a_n}{a_n}$	b	b_n
$a_{\pm k} = \frac{1}{2}$	$o_{\pm k} =$	2

2.1.6.4 Zweiseitiges Amplituden-/Phasendiagramm (komplexes Spektrum)

2.1.7 Leistung

Quadratischer Mittelwert (Leistung):

$$X^{2} = \sum_{n=-\infty}^{\infty} |c_{n}|^{2} = |c_{0}|^{2} + 2 \cdot \sum_{n=1}^{\infty} |c_{n}|^{2} = \left(\frac{a_{0}}{2}\right)^{2} + \sum_{n=1}^{\infty} \frac{a_{n}^{2} + b_{n}^{2}}{2} = \left(\frac{a_{0}}{2}\right)^{2} + \sum_{n=1}^{\infty} \frac{d_{n}^{2}}{2}$$

Polarkoordinaten der komplexen Fourierkoeffizienten c_k werden in zwei Diagrammen dargestellt:

$$\begin{array}{l|l} \mbox{Amplitude} = |c_k| & \mbox{Phase} = \arg(c_k) \\ \mbox{Amplituden} & \rightarrow & \mbox{Achssymmetrisch} & |c_n| = |c_{-n}| \\ \mbox{Phasen} & \rightarrow & \mbox{Punktsymmetrisch} & \arg(c_n) = -\arg(c_{-n}) \\ \mbox{Verknüpfung zum Einseitigen Amplituden-} \\ \mbox{Phasendiagramm:} & \mbox{für } k \ge 0 \ \mbox{gilt:} \\ \mbox{A}_n = 2|c_n| = 2|c_k| & \mbox{} \varphi_n = \arg(c_n) = \arg(c_k) \\ \end{array}$$

2.2 Fourier-Integral - Fourier-Transformation

 $\label{eq:continuier} \textbf{Idee:} \ \textbf{Kontinuierliche, aperiodische Signale in ein kontinuierliches Spektrum zerlegen.}$

Zeitfunktion $f(t) \circ F(j\omega)$ Spektralfunktion

2.2.1 Definition

Fourier-Transformation: Fourier-Rücktransformation:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt \qquad \qquad f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega)e^{j\omega t} d\omega$$

2.2.2 Bandbreitentheorem und Konvergenzgeschwindigkeit

Bandbreitentheorem: $\Delta \omega \cdot \Delta t \ge \gamma$

Konvergenzgeschwindigkeit: Je glatter f(t), desto schneller fällt $F(j\omega)$ ab.

	Konverge	enzgeschwindig	gkeit \rightarrow	
f(t)	1	$\Lambda_a(t)$	$p_a(t)$	$\delta(t)$
○—●				
$F(j\omega)$	$2\pi\delta(j\omega)$	$\frac{4}{a} \frac{(\sin(a\omega/2))^2}{\omega^2}$	$2\frac{\sin(a\omega)}{\omega}$	1
	\leftarrow	Konvergenz	geschwind	igkeit

2.2.3 Eigenschaften der Fourier-Transformation

Zeitbereich	0●	Frequenzbereich
f(t) gerade	0—●	$F(j\omega)$ gerade
f(t) reell und gerade	0●	$F(j\omega)$ reell und gerade
f(t) imaginär und gerade	0—●	$F(j\omega)$ imaginär und gerade
f(t) ungerade	0—●	$F(j\omega)$ ungerade
f(t) reell und ungerade	0—●	$F(j\omega)$ imaginär und ungerade
f(t) imaginär und ungerade	0●	$F(j\omega)$ reell und ungerade
f(t) (zeit)kontinuierlich	0—●	$F(j\omega)$ nicht periodisch
f(t) (zeit)diskret	0—●	$F(j\omega)$ periodisch
f(t) periodisch	0●	$F(j\omega)$ (frequenz)diskret
f(t) nicht periodisch	0—●	$F(j\omega)$ (frequenz)kontinuierlich

Linearität:

$$\alpha \, f(t) + \beta \, g(t) \circ - \bullet \, \alpha \, F(\mathbf{j}\omega) + \beta \, G(\mathbf{j}\omega) \qquad \alpha, \beta \in \mathbb{C}$$

Verschiebung im Zeitbereich:

$$f(t \pm t_0) \circ F(j\omega) e^{\pm j\omega t_0}$$

Vertauschungssatz(Dualität):

$$\begin{array}{c} f(t) & \longleftarrow & F(j\omega) \end{array}$$

$$F(t) & \longleftarrow & 2\pi f(-j\omega) \end{array}$$

Ableitung im Zeitbereich:

 $\frac{d^n f(t)}{dt^n} \circ \bullet (\mathbf{j}\omega)^n F(\mathbf{j}\omega) \qquad n \in \mathbb{N}_0$

Ähnlichkeit:

$$f(\alpha t) \circ \underbrace{1}_{|\alpha|} F\left(\mathbf{j}\frac{\omega}{\alpha}\right) \quad \alpha \in \mathbb{R} \setminus \{0\}$$

Verschiebung im Frequenzbereich:

 $f(t) e^{\pm j\omega_0 t} \longrightarrow F(j(\omega \mp \omega_0))$

Modulationssatz

$$f(t)\cos(\alpha t) \longrightarrow \frac{1}{2} \left[F(\mathbf{j}(\omega - \alpha)) + F(\mathbf{j}(\omega + \alpha)) \right]$$
$$f(t)\sin(\alpha t) \longrightarrow \frac{1}{2\mathbf{j}} \left[F(\mathbf{j}(\omega - \alpha)) - F(\mathbf{j}(\omega + \alpha)) \right]$$

Ableitung im Frequenzbereich:

$$t^n f(t) \circ \longrightarrow j^n \frac{d^n F(j\omega)}{d\omega^n} \qquad n \in \mathbb{N}_0$$

Integration im Zeitbereich:

$$\int_{-\infty}^{t} f(\tau) d\tau \longrightarrow \frac{F(j\omega)}{j\omega} + F(j0) \pi \,\delta(\omega)$$

Faltung im Zeitbereich

$$f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) d\tau \longrightarrow F(j\omega) \cdot G(j\omega)$$

Unendlich lange Folge von Dirac-Impulsen im Zeit und Frequenzbereich

$$\sum_{n=-\infty}^{\infty} \delta(t-n \cdot t_0) \longrightarrow \sum_{n=-\infty}^{\infty} \frac{2\pi}{t_0} \,\delta\left(\omega - n \cdot \frac{2\pi}{t_0}\right)$$

Parseval's Theorem

$$\int_{-\infty}^{\infty} f(t) g^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) G^*(j\omega) d\omega \implies$$

$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) \, d\omega$$

Anfangswerte:

$$f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) \, d\omega \qquad \qquad F(j0) = \int_{-\infty}^{\infty} f(t) \, dt$$

Faltung im Frequenzbereich

$$f(t) \cdot g(t) \circ - \bullet \frac{1}{2\pi} F(j\omega) * G(j\omega)$$

$$\sum_{n=-\infty}^{\infty} \delta(t-n \cdot t_0) \longrightarrow \sum_{n=-\infty}^{\infty} \frac{2\pi}{t_0} \delta\left(\omega - n \cdot \frac{2\pi}{t_0}\right)$$

$$\int_{-\infty}^{\infty} f(t) g^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) G^*(j\omega) d\omega =$$

2.2.4 Existenz des Fourier-Integrals

 $\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(j\omega)|^2 d\omega$

Bessel's Theorem

Die Fourier-Transformation von
$$f(t)$$
 und die inverse Fourier-Transformation existieren wenn:

• $\int_{-\infty}^{\infty} |f(t)| dt < \infty$ • $\int_{-\infty}^{\infty} |F(j\omega)| d\omega < \infty$ f(t) fouriertransformierbar \Rightarrow f(t) fouriertransformierbar \Rightarrow

f(t) eine Linearkombination von absolut integrierbaren

• Function $f_i(t)$ und von inversen Fourier-Transformation \Rightarrow f(t) fouriertransformierbar von $F_i(j\omega)$ die selber absolut integrierbar sind, ist.

Leistungs-/Energiedichtespektrum 2.3

2.3.1 Leistungsdichtespektrum

Leistungsdichtespektrum:

$$\begin{array}{ll} \mbox{Leistungsdichtespektrum:} & \hline \Phi_{ff}(j\omega) = \lim_{T \to \infty} \frac{|F(j\omega)|^2}{T} & \mbox{Kreuz-LDS} & \hline \Phi_{fg}(j\omega) = \lim_{T \to \infty} \frac{F(j\omega)G^*(j\omega)}{T} \\ \mbox{normierte Leistung:} & \hline P_n = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} \Phi_{ff}(j\omega) \, d\omega = \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} \left(\lim_{T \to \infty} \frac{|F(j\omega)|^2}{T} \right) \, d\omega \end{array}$$

Eigenschaften des Leistungsdichtespektrum $\Phi(j\omega)$ (x(t) ist reell und schwach-stationär):

 $\Phi_{ff}(j\omega) = \lim_{T \to \infty} \frac{|F(j\omega)|^2}{T}$

- $\Phi(j\omega)$ ist reell
- $\Phi(j\omega) > 0$
- $\Phi(j\omega) = \Phi(-j\omega)$

•
$$\Phi(0) = \int_{-\infty}^{\infty} \varphi_{xx}(\tau) d\tau$$

2.3.2 Energiedichtespektrum

Energiedichtespektrum:

normierte Energie:

$$E_{ff}(j\omega) = |F(j\omega)|^2$$
$$W_n = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{ff}(j\omega) \, d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(j\omega)|^2 \, d\omega$$

2.3.3 Wiener-Chintchine Theorem

Für Leistungssignale gilt:

Autokorrelationsfunktion
$$\longrightarrow$$
 Leistungsdichtespektrum
 $\varphi_{xx}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_{xx}(j\omega) e^{j\omega t} d\omega \longrightarrow \Phi_{xx}(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi_{xx}(t) e^{-j\omega t} dt$

Kreuzkorrelationsfunktion
$$\circ$$
 Kreuzleistungsdichte
 $\varphi_{xy}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_{xy}(j\omega) e^{j\omega t} d\omega \circ \Phi_{xy}(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi_{xy}(t) e^{-j\omega t} dt$

Für Energiesignale gilt:

Autokorrelationsfunktion
$$\circ$$
 Leistungsdichtespektrum
 $\varphi_{xx}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{xx}(j\omega) e^{j\omega t} d\omega \circ E_{xx}(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(t)_{xx} e^{-j\omega t} dt$

2.4 Laplace-Transformation

Idee: Kausale Signale (f(t) = 0 für t < 0) im Bildbereich (Spektraldarstellung) darstellen.

Zeitfunktion $f(t) \circ - \bullet F(s)$ Bildfunktion $s = \sigma + j\omega$

Mit dem Dämpfungsfaktor σ kann die Konvergenz von Signalen erzwungen werden.

2.4.1 Definition

 $F(s) = \int_{0}^{\infty} f(t) e^{-st} dt$

Laplace-Transformation:

Laplace-Rücktransformation: $f(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F(s) e^{st} ds$

 $\beta \in \mathbb{C}$

2.4.2 Eigenschaften der Laplace-Transformation

Linearität:

$$\alpha f(t) + \beta g(t) \circ - \bullet \alpha F(s) + \beta G(s)$$
 $\alpha,$

$$f(\alpha t) \circ - \bullet \frac{1}{\alpha} F\left(\frac{s}{\alpha}\right) \quad 0 < \alpha \in \mathbb{R}$$

Verschiebung im Frequenzbereich:

$$f(t) e^{\mp \alpha t} \circ - \bullet F(s \pm \alpha)$$

Ähnlichkeit:

Ableitung im Zeitbereich

 $f(t \pm t_0) \longrightarrow F(s) e^{\pm st_0}$

Verschiebung im Zeitbereich:

$$\frac{d^n f(t)}{dt^n} \circ - \bullet \ (s)^n F(s) - s^{n-1} f(0^+) - s^{n-2} \frac{df(0^+)}{dt} - \ldots - \frac{d^{n-1} f(0^+)}{dt^{n-1}}$$

Ableitung im Frequenzbereich:

$$(-t)^n f(t) \circ - \bullet \frac{d^n F(s)}{ds^n} \qquad n \in \mathbb{N}_0$$

Integration im Zeitbereich:

$$\int_{0}^{t} f(\tau) \, d\tau \circ - \bullet \, \frac{F(s)}{s}$$

Faltung im Zeitbereich

$$f(t) * g(t) = \int_{0}^{t} f(\tau)g(t-\tau) d\tau \frown F(s) \cdot G(s)$$

$$f(t) \cdot g(t) \circ \longrightarrow \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F(\xi) G(s-\xi) d = \frac{1}{2\pi j} F(s) * G(s)$$

Endwert:

 $\lim_{t \to \infty} f(t) = \lim_{s \to 0} s F(s);$ wenn $\lim_{t \to \infty} f(t)$ existiert.

Multiplikation mit t:

$$t \cdot f(t) \circ - \bullet \frac{-dF(s)}{ds}$$

Anfangswert:

 $\lim_{t \to 0} f(t) = \lim_{s \to \infty} s F(s)$ wenn $\lim_{t \to 0} f(t)$ existient.

2.4.3 Lösen von linearen Differentialgleichungen mit Hilfe der Laplace-Transformation

2.5 Zusammenhang Fourier-/Laplace-Transformation

- Liegt die $j\omega$ -Achse im Konvergenzbereich von F(s), so kann s durch $j\omega$ ausgetauscht werden, um $F(j\omega)$ zu erhalten.
- Liegt die $j\omega$ -Achse ausserhalb des Konvergenzbereichs von F(s), so konvergiert die Fourier-Transformation $F(j\omega)$ nicht.
- Liegt die $j\omega$ -Achse auf der Grenze des Konvergenzbereiches von F(s), können die Fourier-Transformation $F(j\omega)$ und die Laplace-Transformation übereinstimmen, müssen aber nicht.

2.6 Faltung

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) \, d\tau = h(t) * x(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau) \, d\tau$$

3 Systembeschreibung

3.1 Begriffe

Begriff	Beschreibung	Zusätzliche Bemerkungen
	Eindeutige Zuordnung von Ausgang (Wirkung)	Übertragungswege (Leistungen), Filter,
Systen	und Eingang (Ursache)	Verstärker
Jysten	x(t) System $y(t)$	SISO-, MIMO-, SIMO- und
		MISO-Systeme
Wirkungsfreiheit	Ausgang und Eingang des nachfolgenden	Hochohmiger Eingang und
Wirkungsmeinen	Systems beeinflussen einander nicht	treibende Ausgangsstuffe
	System ohne Gedächtnis.	$y(t) = f\{x(t)\} \ \forall t$
Statisch	Wert am Ausgang hängt nur von gegenwärtigen	
	Werten am Eingang ab.	z.B. Widerstandsnetzwerk
	System mit Gedächtnis	$y(t) = f\{x(t \pm t_0)\}$
Dynamisch	Wert am Ausgang hängt von gegenwärtigen,	$\int \dots dt$; $\frac{d}{dt}$; * ausser mit $\delta(t)$
Dynamisch	und/oder vergangenen und/oder zukünftigen	at
	Werten am Eingang ab.	RLC-Netzwerke
	Wert am Ausgang hängt von gegenwärtigen	$y(t) = f\{x(t-t_0)\}$
Kausal	und/oder vergangenen Werten am Eingang ab.	alle realen Systeme
	Wert am Ausgang hängt von zukünftigen	$y(t) = f\{x(t+t_0)\}$
Akausal	und/oder gegenwärtigen und/oder vergangenen	Nur mit Programmen die
	Werten am Eingang ab.	"off-line" rechnen möglich.
	Linearkombination am Eingang ruft	Superposition:
	entsprechende Linearkombination am	$\alpha x_a(t) + \beta x_b(t) \to \alpha y_a(t) + \beta y_b(t)$
Linear	Ausgang hervor.	$x(t) = 0 \rightarrow y(t) = 0$
	Nur Eingang $x(t)$ muss linear sein,	RLC-Netzwerke
	variable Faktoren $f(t)$ nicht (z.B. $sin(t)$)!	(lin. DGL mit konst. Koeff.)
		Superposition ist nicht erfüllt!
Nicht Linear	Systeme die neue Frequenzanteile erzeugen	Modulation (erwünscht)
	Systeme die neue frequenzantene erzeugen.	nichtlineare Verzerrungen/Kennlinie
		(unerwünscht)
	Zeitliche Verschiebung des Eingangs ruft	$x(t-t_v) \to y(t-t_v)$
Zeitinvariant	identische zeitliche Verschiebung am	
	Ausgangs hervor.	RLC-Netzwerke, Faltung *
Zeitvariant	Zeitinvarianz ist nicht erfüllt.	Nichtlineare Faktoren $f(t)$ (z.B. $sin(t)$)
Booll	Reelles Eingangssignal bewirkt	
	reelles Ausgangssignal	
	Bei jedem Ausgangssignal kann eindeutig	$h(t) = t^3$ invertierbar
Invertierbar	auf das entsprechende Eingangssignal	
	geschlossen werden.	$(t) = t^2$ nicht invertierbar

3.2 LTI-Systeme (linear-time-invariant-Systems)

3.2.1 Impulsantwort und Frequenzgang

Zeitbereich	y(t)	=	h(t)	*	x(t)	LTI-System kausal	
	Ŭ Ó		è		Ì	$\Rightarrow h(t) = 0 \text{für} t < 0$	
Frequenzbereich	$Y(j\omega)$	=	$H(j\omega)$	•	$X(j\omega)$	x(t) $h(t)$	y(t)
Bildbereich $(s = \sigma + j\omega)$	Y(s)	=	H(s)	•	X(s)		→ Î
			UTF			$X(j\omega)$ $H(j\omega)$	$Y(j\omega)$
Frequenzgang $H(j\omega)$	H	Frequ	enzgang		$H(j\omega) =$	$= \int_{-\infty}^{\infty} h(t) e^{-j\omega t} dt$	
$H(j\omega) = H(j\omega) \cdot e^{j\theta(\omega)}$	I	Ampl	itudengar	ng	$ H(j\omega) $	$= \sqrt[\infty]{\operatorname{Re}(H(j\omega))^2 + \operatorname{Im}(H(j\omega))^2}$	
	I	Phase	engang		$\theta(\omega) = \mathbf{a}$	$\arctan\left(rac{\mathrm{Im}(H(j\omega))}{\mathrm{Re}(H(j\omega))} ight)$	

3.2.2 Zusammenhang Impulsantwort h(t) und Einheitssprungantwort g(t)

3.2.3 Stabilität

3.2.3.1 BIBO-Stabilität

BIBO-stabil, wenn beschränktes Eingangssignal

beschränktes Ausgangssignal

$$|x(t)| < A \quad \rightarrow \quad |y(t)| < B \quad \text{mit } A, B \in \mathbb{R}$$

$$\int_{-\infty}^{\infty} |h(t)| \, dt < \infty$$

${\bf BIBO\text{-stabil}} \quad \rightarrow \quad {\bf stabil \ oder \ Granzstabil}$

3.2.3.2 Asympptotische Stabilität

stabil:	$\lim_{t \to \infty} h(t) = 0 \qquad (\text{Pole nur in der linken } s\text{-Halbebene})$	_
grenzstabil:	Kein Pol in der rechten s -Halbebene liegt.	
	Mindestens ein einfacher Pol auf der j -Achse der s -Ebene liegt.	
	Kein mehrfacher Pol auf der j -Achse der s -Ebene liegt.	
instabil:	Mindestens ein Pol in der rechten s-Halbebene	
	Mindestens ein mehrfacher Pol auf der j -Achse der s -Ebene liegt.	

3.2.3.3 Stabilität mit Hurwitz-Kriterium

Untersuchung des charakteristischen Polynoms P(s) (Nenner der UTF): $P(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$

stabil:	charakteristisches Polynom $P(s)$ ist ein Hurwitz-Polynom
grenzstabil:	charakteristisches Polynom $P(s)$ ist ein modifiziertes Hurwitz-Polynom
instabil:	charakteristisches Polynom $P(s)$ ist kein Hurwitz-Polynom

	Hurwitz-Polynom:		modifiziertes Hurwitz-Polynom:
•	Koeffizienten $a_i > 0$ für $i = 0n$	•	Koeffizienten $a_i \ge 0$ für $i = 0n$
•	Hurwitz-Determinanten $D_i > 0$ für $i = 1n$	•	Hurwitz-Determinanten $D_i > 0$ für $i = 1(n-2)$
		•	Hurwitz-Determinanten $D_{n-1} = D_n = 0$

Hurwitz-Determinanten D_i

D_1	=	a_{n-1}							~	0	0		0
_		a_{n-1}	a_n					$ a_{n-1} $	a_n	0	0	•••	0
D_2	=		<i>a</i>					a_{n-3}	a_{n-2}	a_{n-1}	a_n		0
		$ a_{n-3} $	$ a_{n-2} $. I		D_{n-1}	=	a_{n-5}	a_{n-4}	a_{n-3}	a_{n-2}		0
		a_{n-1}	a_n	0		n-1					n-2		0
D_3	=	a_{n-3}	a_{n-2}	a_{n-1}						•••	•••	•••	0
- 5			~n-2	~ <i>n</i> -1				0	0	0	0	0	a_1
_		$ a_{n-5} $	a_{n-4}	$ a_{n-3} $		D_n	=	$a_0 D_n$	_1				
D_{k}	=					- 11		$0 = n^{-1}$	1				

3.3 Phasen- und Gruppenlaufzeit

Verzögerung eines Signals durch ein System sind definiert durch:

- Phasenlaufzeit für ein einzelnes Sinussignal
- Gruppenlaufzeiten für mehrere (Gruppen von)Sinusschwingungen

Die Signalverzögerung von Phasenlaufzeit $\tau_P(\omega)$ und Gruppenlaufzeit $\tau_G(\omega)$ sind identisch, wenn:

•
$$\theta(\omega) = -\omega \cdot t_0$$

- Amplitudengang konstant ist $\rightarrow H(j\omega) = \alpha \cdot e^{-j\omega t_0}$
- \rightarrow Signalverzögerung beträgt für alle Frequenzen $\tau_P = \tau_G = t_0$

FIR-Filter (digitale Filter) mit symmetrischen Koeffizienten haben eine konstante Signalverzögerung.

3.3.1 Phasenlaufzeit

Antwort eines Systems auf eine Sinusschwingung:

$$x(t) = A \cdot \sin(\omega_0 t + \gamma) \quad \rightarrow \quad y(t) = \alpha \cdot A \cdot \sin(\omega_0 (t - t_0) + \gamma)$$

Phasenlaufzeit (Verzögerung): $\tau_P(\omega) = \frac{-\theta(\omega)}{\omega}$

3.3.2 Gruppenlaufzeit

Gruppenlaufzeit (Verzögerung):

3.4 Verzerrungen

Ein Übertragungssystem muss eine ausreichende Bandbreite besitzen, da in der Regel ein Frequenzgemisch übertragen wird. Stimmt der zeitliche Verlauf einer Schwingung auf der Empfängerseite nicht mehr mit der Senderseite überein, arbeitet das Übertragungssystem nicht verzerrungsfrei.

3.4.1 Lineare Verzerrungen

Bei linearen Verzerrungen werden **Frequenzteile gedämpft**, jedoch keine neuen Frequenzanteile generiert. **Beispiele:** diverse Filter.

Nichtlineare Verzerrungen 3.4.2

Bei nichtlinearen Verzerrungen werden Frequenzteile gedämpft, sowie auch neue Frequenzanteile generiert. Dadurch entstehen Oberwellen. Ein Mass für nichtlineare Verzerrungen ist der Klirrfaktor

Beispiele: Systemübersteuerungen, nichtlineare Kennlinien.

3.4.3 Klirrfaktor

An ein System wird eine **einzelne Sinusschwingung** angelegt:

Klirrfaktor:
$$k = \sqrt{\frac{U_2^2 + U_3^2 + \dots + U_n^2}{U_1^2 + U_2^2 + U_3^2 + \dots + U_n^2}}$$
 Teilklirrfaktor:
$$k_m = \sqrt{\frac{U_m^2}{U_1^2 + U_2^2 + U_3^2 + \dots + U_n^2}}$$
Klirrdämpfungsmass:
$$a_k = 20 \cdot \log\left(\frac{1}{k}\right)$$
 Teilklirrdämpfungsmass:
$$a_{km} = 20 \cdot \log\left(\frac{1}{k_m}\right)$$

Total Harmonic Distortion:

$$THD = \sqrt{\frac{U_2^2 + U_3^2 + \dots + U_n^2}{U_1^2}}$$

Effektivwert des gesamten Ausgangssignal: Effektivwert der entstandenen Harmonischen: Effektivwert der Grundschwingung: Effektivwert m-ten Harmonischen:

$$\begin{array}{c|c} \sqrt{U_1^2+U_2^2+U_3^2+\ldots+U_n^2} \\ \sqrt{U_2^2+U_3^2+\ldots+U_n^2} \\ \sqrt{U_1^2} \\ \sqrt{U_m^2} \end{array} \begin{array}{c} \text{Klirrfaktor:} & 0 \leq k < 1 \\ \text{THD:} & 0 \leq THD < \infty \\ \text{Allgemein:} & THD \geq k \\ \text{kleine Verzerr.:} & THD \cong k \end{array}$$

3.4.4 Verzerrungsfreie Systeme

Ein Verzerrungsfreies System muss folgende Bedingungen erfüllen:

- keine Amplitudenverzerrung: $|H(j\omega)| = \alpha \neq 0$
- keine Phasenverzerrung: • $\theta(\omega) = -\omega t_0$

Übertragung von stochastischen Signalen 3.5

Ein stochastisches Signal x(t) wird durch ein LTI-System mit übertragen \Rightarrow y(t) = x(t) * h(t)

Linearer Mittelwert:

$$Y(j0) = X(j0) \cdot H(j0) \implies Y_0 = X_0 \cdot H(j0)$$

Autokorrelation:

$$\varphi_{yy}(\tau) = h(-\tau) * h(\tau) * \varphi_{xx}(\tau)$$

$$d\omega$$
 weil $\Phi_{yy}(j\omega) \bullet \varphi_{yy}(\tau)$

Leistungsdichtespektrum:

$$\Phi_{yy}(j\omega) = |H(j\omega)|^2 \Phi_{xx}(j\omega) =$$

Leistung des Ausgangssignals y(t):

$$\varphi_{yy}(j\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(j\omega)|^2 \Phi_{xx}(j\omega) e^{j\omega\tau} d\omega$$
$$Y^2 = \varphi_{yy}(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(j\omega)|^2 \Phi_{xx}(j\omega) d\omega$$

weil
$$\Phi_{yy}(j\omega) \bullet \varphi_y$$

Die Kreuzkorrelationen von einem stochastischen Eingangssignal x(t) und dem stochastischen Ausgangssignal y(t)eines LTI-Sstem hängen wie folgt zusammen:

$$\varphi_{xy}(\tau) = h(\tau) * \varphi_{xx}(\tau) \longrightarrow \Phi_{xy}(j\omega) = H(j\omega) \cdot \Phi_{xx}(j\omega)$$
$$\varphi_{yx}(\tau) = h(-\tau) * \varphi_{xx}(\tau) \longrightarrow \Phi_{yx}(j\omega) = H^*(j\omega) \cdot \Phi_{xx}(j\omega)$$
$$\varphi_{yx}(\tau) = \varphi_{xy}(-\tau) \longrightarrow \Phi_{yx}(j\omega) = \Phi_{xy}(-j\omega) = \Phi^*_{xy}(j\omega)$$

Frequenzverhalten von analogen LTI-Systemen 4

Dämpfung und Verstärkung 4.1

Dämpfung:

In passiven Netzwerken wird die Energie der Signale $ged{ampft} \rightarrow Eingangsgr{o}sse > Ausgangsgr{o}sse.$

Dämpfungsfaktor:

$$D = \frac{\text{Eingangsgrösse}}{\text{Ausgangsgrösse}} = \frac{P_1}{P_2} = \frac{U_1}{U_2} = \frac{I_1}{I_2}$$

Um grosse Messbereiche abdecken zu können, wird der Dämpfungsfaktor oft logarithmisch ausgedrückt.

D \ddot{a} mpfungsmass in dB

$$a = 10 \cdot \log\left(\frac{P_1}{P_2}\right) = 20 \cdot \log\left(\frac{U_1}{U_2}\right) = 20 \cdot \log\left(\frac{I_1}{I_2}\right)$$

Verstärkung:

In aktiven Netzwerken wird die Energie der Signale verstärkt \rightarrow Eingangsgrösse < Ausgangsgrösse.

Verstärkungsfaktor:

Verstärkungssmass in dB

$$T = \frac{\text{Ausgangsgrösse}}{\text{Eingangsgrösse}} = \frac{P_2}{P_1} = \frac{U_2}{U_1} = \frac{I_2}{I_1} = \frac{1}{D}$$

$$a = 10 \cdot \log\left(\frac{P_1}{P_2}\right) = 20 \cdot \log\left(\frac{U_1}{U_2}\right) = 20 \cdot \log\left(\frac{I_1}{I_2}\right)$$

$$a = 10 \cdot \log\left(\frac{P_2}{P_1}\right) = 20 \cdot \log\left(\frac{U_2}{U_1}\right) = 20 \cdot \log\left(\frac{I_2}{I_1}\right)$$

Achtung:

Mit Dezibel werden Leistungen verglichen, nicht Amplituden!

Ein weiteres Mass aus der Telefonie ist das Neper (NP)

a =

Dämpfungsmass:

$$\frac{1}{2} \cdot \log\left(\frac{P_1}{P_2}\right) = \log\left(\frac{U_1}{U_2}\right) = \log\left(\frac{I_1}{I_2}\right) \qquad \begin{bmatrix} Np \end{bmatrix} \qquad 1 \ dB \\ 1 \ Np \qquad \end{bmatrix}$$

$$1 dB = \frac{\ln(10)}{20} Np$$

$$1 Np = 20 \cdot \log(e) dB$$

Achtung:

Mit Neper werden Amplituden verglichen, nicht Leistungen!

4.2 **Relative und Absolute Pegel**

Relative Pegel:

Relative Pegel werden in dB angegeben. Dabei wird das Verhältnis zwischen zwei Leistungen an verschiedenen Orten des Systems verglichen, beispielsweise $\frac{P_{\text{Ausgangs}}}{P_{\text{Eingang}}}$. Ist die *dB*-Zahl positiv so wird die Eingangsleistung verstärkt, ist die dB-Zahl negativ so wird sie gedämpft.

Absolute Pegel:

Absolute Pegel werden in dBx angegeben, wobei x für ein Kürzel eines bestimmten Referenzpegel steht. Hier wird die Leistung an einem Ort des Systems mit dem Referenzpegel verglichen, beispielsweise $\frac{P_{\text{Ausgangs}}}{1dBW}$.

Dezibel-Verhältnisse:

	Leistungsverhältnis	Amplitudenverhältnis
20dB	100	10
10dB	10	$\sqrt{10}$
6dB	4	2
3dB	2	$\sqrt{2}$
0dB	1	1
-3dB	1/2	$1/\sqrt{2}$
-6dB	1/4	1/2
-10dB	1/10	$1/\sqrt{10}$
-20dB	1/100	1/10

Referenzpegel aus der Praxis:

dBW	0 dBW = 1W
dBm	0 dBm = 1mW
dBV	$0dBV = (1V)^2/R_{ref}$
$DB\mu V$	$0dB\mu V = (1\mu V)^2/R_{ref}$

Bei Spannungspegeln muss der Referenzwiderstand berücksichtigt werden. HF-Technik: $R_{ref} = 50\Omega$ Telefonie: $R_{ref} = 600\Omega$

Übertragungsfunktion \rightarrow Frequenzgang 4.3

Die Übertragungsfunktion eines LTI-Systems mit konzentrierten Koeffizienten kann als rationale Funktion mit reellen Koeffizienten geschrieben werden.

Der Frequenzgang kann nun aus der Übertragungsfunktion ermittelt werden.

 $F(j\omega) = H(s)|_{s=j\omega}$

Pol- und Nullstellen, Pol- und Nullstellenfrequenz/güte 4.4

Die Lösungen der Gleichungen N(s) = 0 und D(s) = 0 ergeben die Nullstellen bzw. Polstellen der Übertragungsfunktion. Diese können in einem **Pol/Nullstellendiagramm** dargestellt werden.

Da die Pol- und Nullstellen immer reell oder in konjugiert-komplexen Paaren vorkommen $(a_i, b_j \in \mathbb{R})$, kann H(s) auch als Produkt von Faktoren mit reellen Koeffizienten dargestellt werden

$$H(s) = K \cdot \frac{\prod_{i=1}^{r} (s^2 + 2s\sigma_{zi} + \omega_{zi}^2) \prod_{i=2r+1}^{m} (s - z_i)}{\prod_{j=1}^{t} (s^2 + 2s\sigma_{pj} + \omega_{pj}^2) \prod_{j=2t+1}^{n} (s - p_j)} = K \cdot \frac{\prod_{i=1}^{r} (s^2 + \frac{\omega_{zi}}{q_{zi}} s + \omega_{zi}^2) \prod_{i=2r+1}^{m} (s - z_i)}{\prod_{j=1}^{t} (s^2 + \frac{\omega_{pj}}{q_{pj}} s + \omega_{pj}^2) \prod_{j=2t+1}^{n} (s - p_j)}$$

4.4.1 Pol- und Nullstellenfrequenz (ω_{pj} , ω_{zi}), Pol- und Nullstellengüte (q_{pj} , q_{zi}) Für ein konjugiert-komplexes Polpaar gilt: $(s - p_1)(s - p_2) = s^2 + 2s\sigma_p + (\sigma_p^2 + \tilde{\omega}_p^2)$

 $\omega_p = \sqrt{\sigma_p^2 + \tilde{\omega}_p^2}$ bzw. **Polgüte:** $q_p = \frac{\omega_p}{2 \cdot \sigma_p} = \frac{1}{2 \cdot \cos(\alpha)}$ Polfrequenz:

Für die Nullstellenfrequenz und die Nullstellengüte gilt das Gleiche.

Für ein Polpaar (oder auch Nullstellenpaar) auf der negativ reellen Achse

$$\omega_p = \sqrt{\sigma_{p1} \cdot \sigma_{p2}}$$
$$q_p = \frac{\sqrt{\sigma_{p1} \cdot \sigma_{p2}}}{\sigma_{p1} + \sigma_{p2}} \le \frac{1}{2}$$

$\textbf{4.5} \quad \textbf{Pol/Nullstellendiagramm} \rightarrow \textbf{Frequenzgang}$

Ī

Der Frequenzgang kann graphisch aus dem Pol/Nullstellendiagramm bestimmt werden. Dabei gilt für eine beliebig wählbare Kreisfrequenz ω_0

$$H(j\omega_0) = K \cdot \frac{(j\omega_0 - z_1)(j\omega_0 - z_2)...(j\omega_0 - z_m)}{(j\omega_0 - p_1)(j\omega_0 - p_2)...(j\omega_0 - p_n)} = |H(j\omega_0)| \cdot e^{j\varphi(\omega_0)}$$
mit

$$|H(j\omega_0)| = K \cdot \frac{\prod_{i=1}^m A_{zi}}{\prod_{j=1}^n A_{pj}} \quad \text{und} \quad \left[\varphi(j\omega_0) = \arg(K) + \sum_{i=1}^m \theta_{zi} - \sum_{j=1}^n \theta_{pj}\right]$$

4.6 Minimalphasennetzwerke

Ein Minimalphasennetzwerk besitzt die kleinste Phasendrehung, die bei einem vorgeschriebenen Amplitudengang möglich ist. Daher ist bei Minimalphasennetzwerken nur **Amplitudengang oder Phasengang** frei wählbar.

Als wesentliches Merkmal sind bei einem Minimalphasennetzwerken keine Nullstellen in der rechten *s*-Halbebene (RHE), darf jedoch auf der imaginären-Achse haben.

4.7 Bode-Diagramm

Im Bodediagramm wird das Übertragungsverhalten von Vierpolen dargestellt. Es besteht jeweils aus einem **Amplituden-** und einem **Phasengang**.

• Amplitudengang

Der Betrag der Amplitude (Verstärkung) wird als Funktion der (Kreis-)Frequenz **doppelt-logarithmisch** dargestellt.

• Phasengang

Die Phasendifferenz zwischen Ein-und Ausgang wird Funktion der (Kreis-)Frequenz **logarithmisch** dargestellt.

4.7.1 Approximationen des Bode-Diagramms

Konstanter Faktor:
$$H(s) = \alpha e^{j\beta}$$
 $|H(j\omega)|[dB]$ $\angle H(j\omega)[rad]$ $|H(j\omega)| = 20 \cdot \log(\alpha) = konst.$ $\downarrow 20 \cdot \log(\alpha)$ $\omega[rad/s]$ $\angle H(j\omega) = \beta = konst.$ $\downarrow 20 \cdot \log(\alpha)$ $\omega[rad/s]$ Pol im Ursprug: $H(s) = \frac{\alpha}{s}$ $|H(j\omega)| [dB]$ $\angle H(j\omega) [rad]$ $|H(j\omega)| = Gerade mit Steigung -20dB/Dekade, 0dB bei $\omega = \alpha$ $|H(j\omega)| [dB]$ $\angle H(j\omega) [rad]$ $\angle H(j\omega) = -\frac{\pi}{2} = konst.$ $|H(j\omega)| [dB]$ $\angle H(j\omega) [rad]$ Nullstelle im Ursprug: $H(s) = \alpha \cdot s$ $|H(j\omega)| [dB]$ $\angle H(j\omega) [rad]$ $|H(j\omega)| = Gerade mit Steigung 20dB/Dekade, 0 dB bei $\omega = \frac{1}{\alpha}$ $|H(j\omega)| [dB]$ $\angle H(j\omega) [rad]$ $|H(j\omega)| = \frac{\pi}{2} = konst.$ $|H(j\omega)| [dB]$ $\angle H(j\omega) [rad]$ $|H(j\omega)| = \frac{\pi}{2} = konst.$ $|H(j\omega)| [dB]$ $\angle H(j\omega) [rad]$$$

Konjugiert-komplexe Nullstellen:

$$H(s) = \frac{s^2 + s\frac{\omega_z}{q_z} + \omega_z^2}{\omega_z^2}$$

$$|H(j\omega)| = \begin{cases} \omega < \frac{\omega_z}{2}, & 0 \, dB \\ \frac{\omega_z}{2} < \omega < \omega_z, & \text{fallende Gerade, } -20 \, \log(q_z) \text{ bei } \omega = \omega_z \\ \omega_z < \omega < 2 \, \omega_z, & \text{steigende Gerade, } -20 \, \log(q_z) \text{ bei } \omega = \omega_z \\ \omega > 2 \, \omega_z & \text{Gerade mit Steigung 40} dB / \text{Dekade, } 0 \, dB \text{ bei } \omega = \omega_z \\ \frac{\omega_z}{10^{\frac{1}{2q_z}}}, & 0 \\ \frac{\omega_z}{10^{\frac{1}{2q_z}}} < \omega < \omega_z \cdot 10^{\frac{1}{2q_z}}, & \text{linear ansteigend, } \frac{\pi}{2} \text{ bei } \omega = \omega_z \\ \omega > \omega_z \cdot 10^{\frac{1}{2q_z}}, & \pi \end{cases}$$

$$|H(j\omega)| [dB] \quad \leftarrow \quad \angle H(j\omega) [rad]$$

Werte für
$$10^{\frac{1}{2q_p}}/10^{\frac{1}{2q_z}}$$
 und $\frac{1}{10^{\frac{1}{2q_p}}}/\frac{1}{10^{\frac{1}{2q_z}}}$

q_x	0.5	1	1.5	2	3	4	5	6	8	10	20	50	100
$10^{\frac{1}{2q_x}}$	10	3.16	2.15	1.78	1.47	1.33	1.26	1.21	1.15	1.12	1.06	1.02	1.01
$\frac{1}{10^{\frac{1}{2q_x}}}$	0.1	0.316	0.464	0.562	0.681	0.750	0.794	0.825	0.866	0.891	0.944	0.977	0.989

4.7.2 Serieschaltung von Systemen

Jede Übertragungsfunktion H(s) kann in eine Serieschaltung von mehreren Grundsystemen zerlegt werden. Dadurch kann die UTF im Bodediagramm durch Superposition ermittelt werden (Multiplikation entspricht Addition im dB-Bereich).

$$H(s) = \frac{9(s^2 + 11s + 10)}{10(s^2 + 0.3s + 9)}$$
$$= \underbrace{\frac{3^2}{s^2 + \frac{3}{10}s + 3^2}}_{H_1(s)} \cdot \underbrace{\frac{s+1}{1}}_{H_2(s)} \cdot \underbrace{\frac{s+10}{10}}_{H_3(s)}$$

4.7.3 Zusammenhang Pol/Nullstellendiagramm \leftrightarrow Amplitudengang

Mit Hilfe des Pol/Nullstellendiagramm kann der zugehörige Amplitudengang bestimmt werden.

Regeln:

- reelle einfache Nullstellen "knicken nach oben weg"
- reelle einfache Polstellen "knicken nach unten weg"
- Pol-, Nullstelle auf der gleichen Stelle heben sich (theoretisch) auf
- konjugiert komplexe Nullstellen haben eine Senke
- konjugiert komplexe Polstellen haben eine Überhöhung

Die PS/NS mit dem kleinsten Abstand zum Ursprug (nach Abzug der "Aufhebungen"), gibt den Verlauf des Amplitudengangs an.

4.8 Ortskurve (Nyquist-Diagramm) und Nichols-Diagramm

Nebst dem Bodediagramm gibt es noch weitere Methoden um den Amplituden- und Phasengang graphisch darzustellen.

Im Nyquist-Diagramm werden die komplexen Werte des Frequenzganges (Amplitude und Phase) nur in einem Diagramm (komplexe Ebene) dargestellt. Dabei repräsentiert der Abstand eines Punktes zum Ursprug den Betrag und sein Winkel zur Horizontalen die Phase. Die Kreisfrequenz variiert dabei zwischen $-\infty$ und ∞ (Pfeilrichtung).

Im Nichols Diagramm wird die Amplitude (Betrag) in abhängigkeit der Phase ebenfalls in nur einem Diagramm dargestellt. Die Kreisfrequenz variiert dabei zwischen 0 und ∞ .

4.9 Stabilität

Die Stabilität eines LTI-Systems kann über vier verschiedene Methoden bestimmt werden.

1. Niquist-Diagramm (Skript S. 203-205)

Das System ist asymptotisch stabil, wenn die Ortskurve des offenen Regelkreises den kritischen Punkt (-1; j 0) mit wachsender Frequenz weder umkreist noch durchläuft.

2. Nichols-Diagramm (Skript S. 208)

3. Pol-Nullstellendiagramm

Das System ist asymptotisch stabil, wenn alle Pole in der linken s-Halbebene liegen.

4. Eigenwerte der Systemmatrix A (Skript S. 285)

Das System ist asymptotisch stabil, wenn alle Realanteile der Eigenwerte < 0 sind.

5. Bodediagramm (Skript S. 206)

Das System ist asymptotisch stabil, wenn Phasen- und Amplitudenrand >0 sind. Dabei gilt, je grösser der Phasen- und Amplitudenrand ist, desto "stabiler" ist das System.

• Phasenrand

Der Phasenrand ist der Abstand des Phasenganges zur $-\pi\text{-Linie}$ bei der Kreisfrequenz $\omega,$ wo die Amplitude gleich $0\,dB$ ist.

• Amplitudenrand

Der Amplituden
rand ist der Abstand des Amplitudenganges zur $0\,dB$ -Linie bei der Kreisfrequen
z $\omega,$ wo die Phase gleich $-\pi~(-180^\circ)$ ist.

Signalflussdiagramme 5

Ein Signalflussdiagramm (SFD)

- ist eine graphische Darstellung eines Systems, das durch ein Gleichungssystem beschrieben wird.
- ist eine visuelle "Einsicht" in das System hinsichtlich Komplexität, Rückkopplungsschleifen und Vorwärtspfaden.
- bildet eine Brücke zwischen Übertragungsfunktion (Beziehung zwischen Ein- und Ausgang) und möglichen Topologien des Systems.

Definitionen 5.1

Knoten:	Bestimmte Grösse, Signal oder Variable
Quelle:	Knoten, in die keine Zweige einmünden $(X_1) \rightarrow$ unabhängige Variable
Senke:	Knoten ohne weggehende Zweige $(X_5) \rightarrow$ keine andere Variable hängt von dieser ab
Gemischter Knoten:	Knoten mit hineiführenden und weggehenden Zweigen $(X_2, X_3, X_4 \text{ und } X_6)$
Zweig:	Funktionale Abhängigkeit zwischen Knoten
Pfad:	kontinuierliche Folge von Zweigen, die alle in die gleiche Richtung zeigen $(aehd \text{ und } abcd)$
Offener Pfad:	Pfad, bei dem jeder beteiligte Knoten nur einmal durchquert wird $(abcd, aeh, aef)$
Vorwärtspfad:	offener Pfad zwischen Quelle und Senk e $(aehd)$ oder Quelle und gemischtem Knoten (abc)
Schleife:	geschlossener Pfad, der zum Ausgangsknoten zurückkehrt (g, ef)
Eigenschleife:	(Rückkopplungs) schleife, die aus einem Zweig besteht $\left(g\right)$
Zweigtransmittanz:	lineare Grösse, die einen Knoten eines Zweiges zum anderen Knoten in Beziehung setzt $(X_2 = a \cdot X_1)$
Schleifentransmittanz:	Produkt der Zweigtransmittanzen in einer Schleife

5.2 Konstruktionsregeln

- Knoten = Variablen und Zweigtransmittanzen = Koeffizienten des linearen Gleichungssystem.
- Signale durchqueren Zweige nur in Pfeilrichtung und werden mit der entsprechenden Zweigtransmittanz multipliziert.
- Wert der Variable (Knoten) = Summe aller Signale, die in diesen Knoten einmünden.
- Werd der Variable (Knoten) wird auf alle weggehenden Zweige übertragen.

 $X_1(z) = a \cdot X_4(z) + X_0(z)$

 $X_3(z)$

 $X_2(z) = X_1(z)$

 $X_5(z) =$

 $X_4(z) = z^{-1} \cdot X_2(z)$

Beispiel:

5.3 Reduktionsregeln

5.4 Mason's Regel

Übertragungsfunktion zwischen einer **Quelle** x_i und einer Senke oder einem gemischten Knoten x_j lautet:

$$H_{ij} = \frac{x_j}{x_i} = \frac{\sum_{k} P_k \cdot \Delta_k}{\Delta}$$

$$P_k: k-\text{ter Vorwärtspfad}$$

$$\Delta_k: \text{Kofaktor von } P_k$$

$$\Delta: \text{Graph/Netzwerkdeterminante}$$

$$\Delta = 1 - \sum_{k} \text{Schleife}$$

$$+ \sum_{k} \text{Produkt zweier Schleifen, die sich nicht berühren}$$

$$- \sum_{k} \text{Produkt dreier Schleifen, die sich nicht berühren}$$

$$+ \dots - \dots$$

Beispiel:

5.5 Fundamentale Signalflussdiagramme

5.5.1 Ordnung

Die Ordnung eines Signalflussdiagrammes entspricht der minimalen Anzahl fundamentaler Knoten.

n=minimale Anzahl Knoten um alle Schleifen aufzubrechen

5.5.2 Fundamentales Signalflussdiagramm 1. Ordnung

Ein Signalflussdiagramm 1. Ordnung kann auf 4 Transmittanzen reduziert werden \rightarrow fundamentales Signalflussdiagramm 1.Ordnung.

5.6 Operationsverstärker als Signalflussdiagramm

5.7 Inversion eines Signalflussdiagrammes

Durch schrittweise Pfadinversion erhält man das "invertierte" Signalflussdiagramm. Es hat folgende Eigenschaften:

- Treibersignal x_1 wird zur Senke und Ausgangssignal x_4 wird zur Quelle
- nichtkausale Darstellung des ursprünglichen Systems
- Signalflussdiagramm hat nur noch Vorwärtspfade

5.8 Transposition eines Signalflussdiagrammes

Durch Transposition eines Signalflussdiagrammes erhält man das transponierte Signalflussdiagramm. Es hat folgende Eigenschaften:

- Es ist eine wichtige Methode für die Ableitung von alternativen praktischen Topologien mit identischer Übertragungsfunktion.
- Die Toplogie bleibt gleich.
- Die UTF bleibt gleich: $H_1 4 = H_1 4$

Drei Schritte der Transposition:

- 1. Richtungsumdrehung aller Zweigtransmittanzen
- 2. Spiegelung des Signalflussdiagrammes
- 3. Bezeichnungswechsel von Eingangs- und Ausgangsknoten.

5.9 Skalierung eines Signalflussdiagrammes

Die Skalierung dient dazu, das Signalniveau in einem System an bestimmten Knoten zu verändern/anzugleichen. Dies muss beispielsweise gemacht werden, um Übersteuerung zu verhindern, Inverter zu entfernen oder den Dynamikbereich des gesamten Systems zu verbessern.

Trennbündel: minimale Anzahl Zweige, die durchtrennt werden müssen, um das Signalflussdiagramm in genau zwei Teile $(N_a \text{ und } N_b)$ zu trennen.

Druchführung der Skalierung:

- 1. Skalierungszone (Trennbündel) festlegen
- 2. alle eingehenden Zweige mit λ multiplizieren
- 3. alle ausgehenden Zweige mit $1/\lambda$ multiplizieren

Eigenschaften der Skalierung:

- Skalierung der Signalniveaus aller Knoten der Menge N_b mit dem Faktor λ
- Hat keinen Einfluss auf die Übertragungsfunktion, sofern das Trennbündel den Eingangsknoten nicht vom Ausgangsknoten trennt.

6 Zustandsraumdarstellung

Der Grundgedanke der Zustandsraumdarstellung besteht darin, die Differentialgleichung n. Ordnung, welche ein LTI-System beschreibt, durch ein Differentialgleichungssystem mit n Gleichungen 1. Ordnung darzustellen. Es wird aber auch gebraucht um:

- innere Systemstabilitäten zu erkennen.
- Systeme mit mehreren Ein-und Ausgängen und beliebigen Anfangszuständen zu berechnen.
- die Behandlung von zeitvarianten und nichtlinearen Netzwerken zu erleichtern.

6.1 Blockdiagramm und Matrizen

Mit den Eingangsvektor $\vec{u}(t)$, dem Ausgangsvektor $\vec{y}(t)$ und dem Zustandsvektor $\vec{x}(t)$ sowie den Matrizen A, B, C und D ergibt sich die standartisierte Form einer Matrixdifferentialgleichung und einer normalen Matrixgleichung.

$$\vec{x}(t) = A \vec{x}(t) + B \vec{u}(t)$$

 $\vec{y}(t) = C \vec{x}(t) + D \vec{u}(t)$

- n: Zustandsgrössen
- m: Eingangssignale
- k: Ausgangssignale

Matrix	Тур	Zeile x Spalte	Beschreibung
А	Systemmatrix	$n \ge n$	Verhalten des ungestörten Systems $(\vec{u}(t) = \vec{0})$ innere Stabilität des gesamten Systems
В	Steuermarix Eingangsmatrix	$n \ge m$	Wirkung der Eingangsgrösse auf die Zustandsgrösse
С	Beobachtungsmatrix Ausgangsmatrix	$k \ge n$	Abhängigkeit des Zustandes durch die beobachtbare Ausgangsgrösse
D	Übertragungsmatrix Durchgangsmatix	$k \ge m$	unmittelbare Wirkung der Eingangsgrösse auf den Ausgang

6.1.1 Ordnung eines Systems

Die Ordnung ist die kleinste Anzahl Zustandsgrössen $(\vec{x}(t)),$ bzw. die Anzahl unabhängiger Energiespeicher.

6.2 Äquivalente Zustandsraumdarstellung

Eigenschaften der Transformationsmatrix T:

- $n \ge n$ Matrix
- regulär $\rightarrow \det(T) \neq 0$
- $TT^{-1} = T^{-1}T = I$ (Einheitsmatrix)

6.2.1 Berechnung der Transformationsmatrix T

Die Transformationsmatrix T wird aus den Eigenvektoren der Systemmatrix A zusammengesetzt.

- \rightarrow Lösungen der Gleichung $A \cdot \vec{v} = \lambda \cdot \vec{v}$ finden.
 - 1. $\det(A \lambda \cdot I) = 0$ (Singulär)
 - 2. Nullstellen λ_i finden \rightarrow Eigenwerte λ_i von A
 - 3. Für jedes λ_i die Gleichung $(A \lambda_i \cdot I) \cdot \vec{v_i} = 0$ lösen \rightarrow Eigenvektoren $\vec{v_i}$ von A
 - 4. Transformationsmatrix T aus den Eigenvektoren λ_i zusammensetzen $\rightarrow T = [\vec{v}_1 \ \vec{v}_2 \ \dots \ \vec{v}_n]$
 - 5. Kontrollieren $A \cdot \vec{v_i} = \lambda_i \cdot \vec{v_i} \quad \forall i$

6.3 Lösung der Zustandsgleichung im Zeitbereich

Die Lösung der Zustandsgleichung im Zeitbereich lautet:

$$\vec{x}(t) = \Phi(t) \cdot \vec{x}(0) + \int_{0}^{t} \Phi(t-\tau) \cdot B \cdot \vec{u}(\tau) d\tau$$

$$\vec{y}(t) = C \cdot \Phi(t) \cdot \vec{x}(0) + \int_{0}^{t} C \cdot \Phi(t-\tau) \cdot B \cdot \vec{u}(\tau) d\tau + D \cdot \vec{u}(t)$$

mit Fundamentalmatrix oder Übergangsmatrix

6.3.1 Berechnung der Fundamentalmatrix $\Phi(t)$

Laplace-

Diagonalisiertung:

$$\Phi(t) = \mathcal{L}^{-1} \left\{ (sI - A)^{-1} \right\}$$
$$(sI - A)^{-1} \bullet \multimap \Phi(t)$$

$$\Phi(t) = e^{A \cdot t} = T \underbrace{\begin{bmatrix} e^{\lambda_1 t} & 0 & \dots & 0 \\ 0 & e^{\lambda_2 t} & \dots & \dots \\ \dots & \dots & \dots & 0 \\ 0 & \dots & 0 & e^{\lambda_n t} \end{bmatrix}}_{\Phi_{dia}(t)} T^{-1}$$

 $\Phi(t) = e^{At}$

$\Phi_{dia} = e^{A_{dia} \cdot t}$
$A_{dia} = T^{-1}AT$
λ_i Eigenwerte von A

mit

6.3.2 Eigenschaften der Fundamentalmatrix $\Phi(t)$

- $\Phi(0) = I$
- $\Phi^{-1}(t) = \Phi(-t)$ (immer invertierbar)
- $\Phi^k(t) = \Phi(kt)$
- $\Phi(t_1) \cdot \Phi(t_2) = \Phi(t_1 + t_2)$
- $\Phi(t_2 t_1) \cdot \Phi(t_1 t_0) = \Phi(t_2 t_0)$

6.4 Lösung der Zustandsgleichung im Bildbereich (Frequenzbereich)

Im Bildbereich lauten die Zustandsgleichungen folgendermassen:

$$\begin{split} s \vec{X}(s) - \vec{x}(0) &= A \vec{X}(s) + B \vec{U}(s) \\ \vec{Y}(s) &= C \vec{X}(s) + D \vec{U}(s) \end{split}$$

Die Lösung der Zustandsgleichung im Bildbereich lautet:

$$\vec{X}(s) = (sI - A)^{-1} \cdot \vec{x}(0) + (sI - A)^{-1} \cdot B \cdot \vec{U}(s) \vec{Y}(s) = C \cdot (sI - A)^{-1} \cdot \vec{x}(0) + [C \cdot (sI - A)^{-1} \cdot B + D] \vec{U}(s)$$

Übertragungsmatrix H(s) $(k \ge m)$:

$$H(s) = \frac{\vec{Y}(s)}{\vec{U}(s)} = C \cdot (sI - A)^{-1} \cdot B + D \qquad \bullet \longrightarrow \qquad h(t) = C \cdot \Phi(t) \cdot B + D \cdot \delta(t)$$

Tabea Méndez
6.5 Bestimmung der Zustandsraumdarstellung aus der allgemeinen Übertragungsfunktion

Die allgemeine Differentialgleichung eines SISO-Systems der Form

$$\frac{d^n y}{dt^n} + a_{n-1}\frac{d^{n-1}y}{dt^{n-1}} + \dots + a_1\frac{dy}{dt} + a_0y = b_m\frac{d^m u}{dt^m} + b_{m-1}\frac{d^{m-1}u}{dt^{m-1}} + \dots + b_1\frac{du}{dt} + b_0u$$

ergibt die Laplace-Transformation

$$H(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} \qquad \text{mit} \qquad m \le n$$

Diese Übertragungsfunktion kann nun mit verschiedenen Zustandsraumdarstellungen abgebildet werden.

6.5.1 Regelungsnormalform

Für den Fall m < n vereinfacht sich die zweite Gleichung zu:

$$y(t) = \underbrace{\begin{bmatrix} b_0 & b_1 & \dots & b_m & 0 & \dots & 0 \end{bmatrix}}_{C} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ D \end{bmatrix}}_{D} \cdot u(t)$$

6.5.2 Alternative Regelungsnormalform

Die Alternative Regelungsnormalform ist für m < nidentisch mit der normalen Regelungsnormalform. Für den Fall m = nsiehe Skript S.278.

6.5.3 Beobachtungsnormalform

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \vdots \\ \dot{x}_{n-1}(t) \\ \dot{x}_n(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{bmatrix}}_{A} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{bmatrix} + \underbrace{\begin{bmatrix} b_0 - a_0 b_n \\ b_1 - a_1 b_n \\ \vdots \\ b_{n-2} - a_{n-2} b_n \\ b_{n-1} - a_{n-1} b_n \end{bmatrix}}_{B} \cdot u(t)$$

$$y(t) = \underbrace{\begin{bmatrix} 0 & 0 & \dots & 0 & 1 \end{bmatrix}}_{C} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{bmatrix} + \underbrace{\begin{bmatrix} b_n \end{bmatrix}}_{D} \cdot u(t)$$

Für den Fall m < n vereinfacht sich die erste Gleichung zu:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \vdots \\ \dot{x}_n(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{n-1} \end{bmatrix}}_{A} \cdot \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{bmatrix} + \underbrace{\begin{bmatrix} b_0 \\ \vdots \\ b_m \\ \vdots \\ 0 \end{bmatrix}}_{B} \cdot u(t)$$

6.5.4 Alternative Beobachtungsnormalform

Die Alternative Beobachtungsnormalform ist für m < n identisch mit der normalen Beobachtungsnormalform. Für den Fall m = n siehe Skript S.280.

 \Leftrightarrow

6.5.5 Regelungsnormalform vs Beobachtungsnormalform

• A_{Beo} = an Hauptdiagonale gespiegeltes A_{Reg}

•
$$B_{Beo} = C_{Reg}^{\mathsf{T}} \quad \Leftrightarrow \quad B_{Reg} = C_{Beo}^{\mathsf{T}}$$

•
$$C_{Beo} = B_{Reg}^{\mathsf{T}} \quad \Leftrightarrow \quad C_{Reg} = B_{Beo}^{\mathsf{T}}$$

•
$$D_{Beo} = D_{Reg} \quad \Leftrightarrow \quad D_{Reg} = D_{Beo}$$

 A_{Reg} = an Hauptdiagonale gespiegeltes A_{Beo}

6.5.6 Diagonalform oder Jordan-Normalform

Diagonalform für einfache, reelle Pole

Partialbruchzerlegung der UTF $(m \leq)$ mit einfachen, reellen Polen ist:

Diagonalform für einfache, konjugiet-komplexe Pole und für mehrfache, reelle Pole

Für diese Fälle siehe Skript S.283.

6.6 Stabilität

Ein LTI-System ist asymptotisch stabil wenn, wenn alle Eigenwerte der Systemmatrix A einen negativen Realteil besitzten.

 $\Re \{\lambda_i\} < 0 \quad \forall i \qquad \Rightarrow \quad \text{asymptotisch stabil}$

Der Umkehrschluss gilt nicht: System asymptotisch stabil $\Rightarrow \Re \{\lambda_i\} < 0 \quad \forall i$

6.7 Beobachtbarkeit und Steuerbarkeit

6.7.1 Steuerbarkeit

 $Ein \ System \ ist \ vollständig \ steuerbar, \ wenn \ alle \ Zustandsgrössen \ mit \ hilfe \ der \ Eingangsgrössen \ beeinflusst/verändert \ werden \ können.$

Bedingungen für vollständige Steuerbarkeit:

SISO-Systeme	Wenn alle Elemente von $\hat{B} = T^{-1}B \neq 0$ sind
MIMO-Systeme	Wenn in jeder Zeile von $\hat{B} = T^{-1}B$ mindestens ein Element $\neq 0$ ist.
LTI-Systeme	Wenn für jeden Anfangszustand $\vec{x}(t_0)$ eine Steuerfunktion $\vec{u}(t)$ existiert, die das System innerhalb einer endlichen Zeitspanne $t_0 \leq t \leq t_1$ in den Endzustand $\vec{x}(t_1)$ bringt.

Steuerbarkeitsmatrix $(n \times n \cdot m)$: $Q_{\text{Steuerbarkeit}} = \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix}$

Ordnung $n = \text{Rang } Q_{\text{Steuerbarkeit}} \Rightarrow \text{System ist vollständig steuerbar}$

Rang einer Matrix ist gleich der Anzahl linear unabhängigen Zeilen/Spalten.

Eingänge $m = 1 \cap |Q_{\text{Steuerbarkeit}}| \neq 0 \Rightarrow \text{System ist vollständig steuerbar}$

6.7.2 Beobachtbarkeit

 $\label{eq:system} Ein \ System \ ist \ vollständig \ beobachtbar, \ wenn \ die \ Ausgangsgrössen \ von \ allen \ Zustandsgrössen \ beeinflusst/verändert \ werden.$

Bedingungen für vollständige Beobachtbarkeit:

SISO-Systeme	Wenn alle Elemente von $\hat{C} = CT \neq 0$ sind
MIMO-Systeme	Wenn in jeder Spalte von $\hat{C} = CT$ mindestens ein Element $\neq 0$ ist.
LTI-Systeme	Wenn bei bekannter äusserer Beeinflussung $B\vec{u}(t)$ und bekannten Matrizen A und C aus dem Ausgangsvektor $\vec{y}(t)$ über eine endliche Zeitspanne $t_0 \leq t \leq t_1$ der Anfangszustand $\vec{x}(t_0)$ eindeutig bestimmt werden kann.

${f Beobachtbarkeitsmatrix}~(k\cdot n imes n):$	$Q_{ m Beobachtbarkeit} =$	$\begin{bmatrix} C\\ CA\\ CA^2\\ \vdots\\ CA^{n-1} \end{bmatrix}$	
---	----------------------------	---	--

Ordnung $n = \text{Rang } Q_{\text{Beobachtbarkeit}} \Rightarrow \text{System ist vollständig beobachtbar}$

Rang einer Matrix ist gleich der Anzahl linear unabhängigen Zeilen/Spalten.

Ausgänge $k = 1 \cap |Q_{\text{Beobachtbarkeit}}| \neq 0 \Rightarrow$ System ist vollständig beobachtbar

6.7.3 Ausgangssteuerbarkeit

Ein LTI-System ist vollständig ausgangssteuerbar, wenn es eine Steuerfunktion $\vec{u}(t)$ gibt, welche die Ausgänge $\vec{y}(t)$ innerhalb einer endlichen Zeitspanne $t_0 \leq t \leq t_1$ in einen Endwert $\vec{y}(t_1)$ bringt.

Ausgangssteuerbarkeitsmatrix $(k \times (n+1) \cdot m)$:	Q_{A}	usgangssteuerbarkeit = [CB]	CAB	CA^2B	$CA^{n-1}B$	$D \Big]$
Anzahl Ausgänge $k = \text{Rang } Q_{\text{Ausgangssteuerbarkeit}}$	\Rightarrow	System ist vollständig a	usgangs	steuerbar		

Rang einer Matrix ist gleich der Anzahl linear unabhängigen Zeilen/Spalten.

7 Filtertheorie

Ein elektrisches Filter ist ein Netzwerk, dass ein Eingangssignal in gewünschter Art und Weise in ein Ausgangssignal verwandelt. Dabei handelt es sich mehrheitlich um **frequenzselektive**, lineare Netzwerke, welche gewisse Frequenzbereiche übertragen und andere dämpfen. Die Filter lassen sich fünf **Grundtypen** unterteilen.

• Tiefpass (TP)

- Hochpass (HP)
- Bandpass (BP)
- Bandsperre (BS)
- Allpass (AP) \rightarrow zum verändern der Phase

7.1 Realisierung von analogen Filtern

Das Ziel bei der Realisierung von analogen Filter ist, einen gegebenen Amplitudengang durch eine rational gebrochene Funktion möglichst gut zu approximieren und anschliessend die approximierte Übertragungsfunktion mit einem LC-Netzwerk zu realisieren.

Dazu sind folgende Schritte notwendig:

- 1. Frequenznormierung durchführen
- 2. Normierter Tiefpass bestimmen (gegebenes Filter in ein Tiefpass transformieren)
- 3. Art der Approximation wählen (Butterworth, Tschebyscheff I und II, Cauer, Bessel, Gauss, ...)
- 4. Benötigten Filterordnung bestimmen (Nomogramm, Formel, Matlab)
- 5. Normierte Tiefpass-UTF mittels Tabellen bestimmen
- 6. Normierte Tiefpass-UTF in gewünschte Filter-UTF transformieren und entnormieren
- 7. L- und C-Werte für den normierten Tiefpass mittels Tabellen bestimmen
- 8. L- und C-Werte eventuell noch auf die gewünschte Grenzfrequenz anpassen
- 9. L- und C-Werte in die gewünschten Filter-Werte transformieren
- 10. L- und C-Werte bezüglich der Frequenz und des Impedanzniveaus entnormieren

7.2 Das Toleranzschema

Die technischen Anforderungen an die Übertragungseigenschaften eines Filters werden häufig im Frequenzbereich mit Hilfe eines Toleranzschemas beschrieben.

- Stempel: Bestimmt im Durchlassbereich (DB) die maximal zulässige Dämpfung A_{max}
- **Matrize:** Bestimmt im Sperrbereich (SB) die minimal nötige Dämpfung A_{min}

7.3 Frequenznormierung

Die Normierten Grössen berechnen sich folgendermassen:

TP und HP: Referenzfrequenz $\omega_r = \omega_D$ Druchlassfrequenz **BP und BS:** Referenzfrequenz $\omega_r = \omega_m$ Mittenfrequenz

~

7.4 Filtertransformationen

7.4.1 Tiefpass - Hochpass - Transformation

Für die Transformation gelten folgende Regeln:

Ordnung:	$n_{HP} = n_{TP}$
Übertragungsfunktion:	TP \rightarrow HP ; $S \rightarrow \frac{1}{S}$; $H_{HP}(S) = H_{TP}\left(\frac{1}{S}\right)$
Eckfrequenzen:	$\Omega_{S_{TP}} = \frac{1}{\Omega_{S_{HP}}} \qquad ; \qquad \Omega_{D_{TP}} = \frac{1}{\Omega_{D_{HP}}} = 1$
Singularitäten (P/NS):	$P_{kHP} = \frac{1}{P_{kTP}} \qquad ; \qquad Z_{iHP} = \frac{1}{Z_{iTP}}$
Transformation und Entnormierung:	$S \to \frac{\omega_D}{s \cdot \Omega_{3.01dB}}$

7.4.2 Tiefpass - Bandpass - Transformation

Singularitäten (P/NS):
$$P_{kBP_{1,2}} = \frac{P_{kTP} \cdot B \pm \sqrt{(P_{kTP} \cdot B)^2 - 4}}{2} \qquad Z_{iBP_{1,2}} = \frac{Z_{iTP} \cdot B \pm \sqrt{(Z_{iTP} \cdot B)^2 - 4}}{2}$$
Transformation
und Entnormierung:
$$S \rightarrow \frac{\left(\frac{s}{\omega_r}\right)^2 + 1}{\frac{s}{\omega_r} \cdot B \cdot \Omega_{3.01\,dB}}$$

7.4.3 Tiefpass - Bandsperre - Transformation

 ω_r

7.5 Tiefpass - Filter - Approximationen

7.5.1 Butterworth - Filter - Approximation (Allpolfilter) S.310

Amplitudengang:
$$|H(j\Omega)| = \frac{1}{\sqrt{1 + \Omega^{2n}}}$$
DurchlassbereichSperrbereich $|H(0)| = H_{max} = 1$ $|H(j\Omega)| \approx \frac{1}{\Omega^n}$ $|H(j \cdot 1)| = \frac{H_{max}}{\sqrt{2}} = -3.01 dB$ mit $-n \cdot 20 dB/Dek$ abfallend

Pole: Alle Pole liegen in der linken s-Halbebene auf dem Einheitskreis im Abstand $\frac{\pi}{n}$

Filterordnung:
$$n \ge rac{\log\left(rac{10^{A_{min}/10} - 1}{10^{A_{max}/10} - 1}
ight)}{2 \cdot \log\left(rac{\Omega_S}{\Omega_D}
ight)}$$
 $n \in \mathbb{N}$

7.5.2 Gauss - Filter - Approximation (kritisch gedämpfte Filter) (Allpolfilter) S.317

Übertragungsfunktion: H(

H(e) =	1
II(3) =	$\begin{pmatrix} 1 & s \end{pmatrix}^n$
	$\left(\frac{1+\overline{\omega_c}}{\omega_c} \right)$

 ω_c : -3.01 dB-Punkt von jedem der n Teilfilter der Serieschaltung.

Durchlassbereich	Sperrbereich
$ H(0) = H_{max} = 1$	$ H(j\Omega) \approx \frac{1}{\Omega^n}$
$ H(j\cdot 1) = \frac{H_{max}}{\sqrt{2}} = -3.01 dB$	mit $-n \cdot 20 dB/Dek$ abfallend

Pole: *n*-facher Pol auf der negativen σ -Achse \rightarrow kein Einschwingvorgang

 $H(S) = K \cdot e^{-ST_0}$

Dämpfung α bei ω_D , dann muss

$$\omega_c = \frac{\omega_D}{\sqrt{10^{\alpha/(10\,n)} - 1}} \qquad \text{sein.}$$

7.5.3 Bessel - Filter - Approximation (Allpolfilter) S.339

Übertragungsfunktion:

 \rightarrow konstante Gruppenlaufzeit

mit
$$T_0 = 1$$
 gilt: $H(S) = K e^{-S} = \frac{K}{e^S} \approx \frac{K}{D(S)} = \frac{K}{B_n(S)}$
Bessel-Polynom:

$$B_n(S) = (2n-1)B_{n-1} + S^2 B_{n-2}$$

$$B_0(S) = 1 \quad ; \quad B_1(S) = S + 1$$

Pole: Alle Pole liegen in der linken s-Halbebene

7.5.4 Tschebyscheff I - Filter - Approximation (Allpolfilter) S.321

Amplitudengang:

$$|H(j\Omega)| = \frac{1}{\sqrt{1 + e^2 \cdot C_n^2(\Omega)}}$$

Rippelfaktor: $e = \sqrt{10^{A_{max}/10} - 1}$

Tschebyscheff-Polynom erster Art:

$$C_n(\Omega) = 2 \cdot \Omega \cdot C_{n-1}(\Omega) - C_{n-2}(\Omega)$$

$$C_0(\Omega) = 1 \quad ; \quad C_1(\Omega) = \Omega$$

Durchlassbereich	Sperrbereich
$ H(0) = \begin{cases} H_{max} = 1; & n \text{ ungerade} \\ \frac{H_{max}}{\sqrt{1+e^2}} = \frac{1}{\sqrt{1+e^2}}; & n \text{ gerade} \end{cases}$	$ H(j\Omega) \approx \frac{1}{e \cdot C_n(\Omega)}$
$ H(j \cdot 1) = \frac{H_{max}}{\sqrt{1+e^2}} = \frac{1}{\sqrt{1+e^2}}$	mit $-n \cdot 20 dB/Dek$ abfallend

Pole: Alle Pole liegen in der linken *s*-Halbebene auf einer Ellipse

Filterordnung:
$$n \ge \frac{\operatorname{arcosh}\sqrt{\frac{10^{A_{min}/10} - 1}{10^{A_{max}/10} - 1}}}{\operatorname{arcosh}\left(\frac{\Omega_S}{\Omega_D}\right)}$$

 $n \in \mathbb{N}$ $n = (\sum \text{Wendepunte im Durchlassbereich}) + 1$

-10

 $[\operatorname{gp}] \leftarrow (\mho(i)) H$

-35

-40

-45

-50

N=1

N=2 N=3

N=10

N=20

7.5.5 Tschebyscheff II - Filter - Approximation S.330

Amplitudengang:

$$|H(j\Omega)| = \frac{1}{\sqrt{1 + \frac{1}{e^2 \cdot C_n^2\left(\frac{1}{\Omega}\right)}}}$$

Rippelfaktor eund Tschebyscheff-Polynom \mathcal{C}_n siehe Tschebyscheff I

Filterordnung: siehe Tschebyscheff I

PolePole in der linken s-Halbebene,
Nullstellen auf der $j\omega$ -Achse

7.5.6 Cauer - Filter - Approximation S.333

......

Amplitudengang:

$$|H(j\Omega)| = \frac{1}{\sqrt{1 + e^2 \cdot R_n^2(\Omega)}}$$

1

Rippelfaktor: $e = \sqrt{10^{A_{max}/10} - 1}$

tschebyscheff-rationale Funktion:

$$R_n(\Omega) = k \prod_{i=1}^{\frac{n}{2}} \frac{(\Omega^2 - \Omega_{2i-1}^2)}{(\Omega^2 - \Omega_{2i}^2)} \quad \text{gerade } R_n(\Omega) \text{ Funktion}$$
$$R_n(\Omega) = k \Omega \prod_{i=1}^{\frac{n-1}{2}} \frac{(\Omega^2 - \Omega_{2i-1}^2)}{(\Omega^2 - \Omega_{2i}^2)} \quad \text{ungerade } R_n(\Omega) \text{ Funktion}$$

Durchlassbereich		Sperrbereich
$ H(0) = \begin{cases} H_{max} = 1; \\ \frac{H_{max}}{\sqrt{1+e^2}} = \frac{1}{\sqrt{1+e^2}}; \end{cases}$	n ungerade n gerade	Oszillation zwischen 0 und $\frac{1}{\sqrt{1+e^2 L^2}}$
$ H(j \cdot 1) = \frac{H_{max}}{\sqrt{1 + e^2}} = \frac{1}{\sqrt{1 + e^2}}$		bzw. $-\infty dB$ und $20 \log \left(\frac{1}{\sqrt{1+e^2 L^2}}\right) dB$

Pole/Nullstellen: Pole in der linken *s*-Halbebene, Nullstellen auf der $j\omega$ -Achse $e L = \sqrt{10^{A_{min}/10} - 1}$

Filterordnung:

$$\geq \frac{K\left(\left(\frac{\Omega_D}{\Omega_S}\right)^2\right)K\left(1 - \frac{10^{A_{max}/10} - 1}{10^{A_{min}/10} - 1}\right)}{K\left(1 - \left(\frac{\Omega_D}{\Omega_S}\right)^2\right)K\left(\frac{10^{A_{max}/10} - 1}{10^{A_{min}/10} - 1}\right)}, \quad \text{mit } K(k) = \int_0^{\pi/2} \frac{1}{\sqrt{1 - k\left(\sin(\theta)\right)^2}} \, d\theta$$

7.5.7 Vergleich der Tiefpassapproximationen

Typische Amplitudengänge der vier Filtertypen.

n

Übersicht: (Ordinate: Verstärkung (lin); Abszisse: Frequenz)

Entwurf von LC-Filtern 7.6

7.6.1 LC-Tiefpass bestimmen

Zwei Aufbauarten von Tiefpassfiltern:

- Minimal-L Schaltung (häufiger Fall) \rightarrow obere Legende der Tabelle
- Minimal-C Schaltung \rightarrow untere Legende der Tabelle

 U_0 Die Tabellenwerte sind auf $R_2 = 1$ normiert. $\rightarrow \quad R_1 = \frac{R_{\text{Quelle}}}{R_{\text{Last}}}$

Quellen

7.6.2 Anpassung der Grenzfrequenz

Da die Tabellewerte auf die $3.01 \, dB$ -Frequenz normiert sind, müssen diese auf die gewünschte Grenzfrequenz entnormiert werden.

$$L_{TP} = \frac{L_{tab}}{\Omega_{3.01\,dB}} \qquad ; \qquad C_{TP} = \frac{C_{tab}}{\Omega_{3.01\,dB}}$$

Filtertransformation von LC-Filtern 7.6.3

Tiefpass - Hochpass

Tschebyscheff-Filter Gauss-Filter

Butterworth-Filter

 $\Omega_{3.01\,dB} = \sqrt[2n]{\frac{1}{10^{A_{max}/10} - 1}}$ $\Omega_{3.01\,dB} = \cosh\left[\left(\frac{1}{n}\right)\operatorname{arcosh}\left(\frac{1}{e}\right)\right]$ $\Omega_{3.01\,dB} = \sqrt{\frac{2^{1/n} - 1}{10^{\frac{A_{max}}{10n}} - 1}}$

7.6.4 Entnormierung der Frequenz und des Impedanzniveaus

Um die L- und C-Werte für den Bau des Filters zu erhalten müssen die Normierten Grössen bezüglich der Frequenz und des Impedanzniveaus entnormiert werden.

$$L = \frac{L_{FI} \cdot R_r}{\omega_r} \qquad ; \qquad C = \frac{C_{FI}}{\omega_r \cdot R_r}$$

Signal / Funktion	Endliche Signalleis	stung $0 < P_n < \infty, \ (W_n = \infty)$	Endliche Signalenergie $W_n < \infty$
	periodisch ($\omega_0 = 2\pi/T_0$)	stochastisch (stationär)	abklingend, zeitbegrenzt
Autokorrelationsfunktion (AKF)	$\varphi(\tau) = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} f(t)f(t+\tau)dt$	$\varphi(\tau) = \lim_{T \to \infty} \frac{\frac{1}{T}}{T} \int_{-T/2}^{T/2} f(t) f(t+\tau) dt$	$arphi(au) = \int\limits_{-\infty}^{\infty} f(t)f(t+ au)dt$
Fourier-Transformation der AKF	$P_n = rac{1}{T_0} \int_{T_0/2}^{T_0/2} arphi(au) e^{-jn\omega_0 au} d au$	$\Phi(j\omega) = \int\limits_{-\infty}^{\infty} \varphi(au) e^{-j\omega au} d au$	$E(j\omega) = \int_{-\infty}^{\infty} \varphi(\tau) e^{-j\omega\tau} d\tau$
Rücktransformation der AKF	$arphi(au) = \sum_{n=-\infty}^{\infty} P_n e^{jn\omega_0 au}$	$arphi(au) = rac{1}{2\pi} \int\limits_{-\infty}^{\infty} \Phi(j\omega) e^{j\omega au} d\omega$	$\varphi(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E(j\omega) e^{j\omega\tau} d\omega$
Amplitudenspektrum	$c_n = rac{1}{T_0} \int\limits_{-T_0/2}^{T_0/2} f(t) e^{-jn\omega_0 t} dt$	1	1
Amplitudendichtespektrum	I	I	$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$
Leistungsspektrum	$P_n = c_n ^2$		
Leistungsdichtespektrum	Ι	$\Phi(j\omega) = E\left\{ \left. \lim_{T \to \infty} \frac{1}{T} \left \int_{-T/2}^{T/2} f(t) e^{-j\omega t} dt \right ^2 \right\} \right\}$	I
${ m Energiedichtespektrum}$		_	$E(j\omega) = F(j\omega) ^2$
Energie	-		$W = \varphi(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E(j\omega)d\omega$
Leistung	$P=arphi(0)=\sum_{n=-\infty}^{\infty}P_n$	$P=arphi(0)=rac{1}{2\pi}\int\limits_{-\infty}^{\infty}\Phi(j\omega)d\omega$	Ι
Fourier-Reihe	$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$	Ι	Ι
Fourier-Integral	1	1	$f(t) = rac{1}{2\pi} \int\limits_{-\infty}^{\infty} F(j\omega) e^{j\omega t} d\omega$

Tabelle 1.5: Zusammenstellung einiger wichtiger Funktionen von Signalen der Klassen 1, 2a und 2b. $E\{\cdot\}$ ist der Erwartungswertoperator.

Verteilung	gleichverteilt	gaussförmig	sinusförmig (Zeitsignal)	exponentiell
	$ \begin{array}{c} \frac{1}{\overline{A}} \\ \frac{1}{\overline{A}} \\ m - \frac{1}{2} \\ m - \frac{A}{2} \\ m - \frac{A}{2$	$p(a)$ $p(a < \alpha)$ $\frac{1}{\sqrt{2\pi\sigma}}$ μ	$P(a < \alpha)$ $P(a < \alpha)$ $-A$ 0 α A	$p(a)$ $p(a < \alpha)$
Amplitudendichte $p(a) =$	$\begin{cases} \frac{1}{A} & a-m \leq \frac{A}{2}, \\ 0 & a-m > \frac{A}{2}. \end{cases}$	$\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(a-\mu)^2}{2\sigma^2}}$	$\begin{cases} \frac{1}{\pi\sqrt{A^2-a^2}} & a \le A, \\ 0 & a > A. \end{cases}$	$\begin{cases} \lambda e^{-\lambda a} & a \ge 0, \\ 0 & a < 0. \end{cases}$
Wahrscheinlichkeit, dass die Amplitude a kleiner gleich α ist $P(a \le \alpha) = \int_{-\infty}^{\alpha} p(a) da =$	$\begin{cases} 0 & \alpha < m - \frac{A}{2}, \\ \frac{\alpha - (m - \frac{A}{2})}{A}, & \alpha - m \le \frac{A}{2}, \\ 1 & \alpha \ge m + \frac{A}{2}. \end{cases}$	$\left(rac{arphi}{ u-arphi} ight)$	$\begin{cases} 0\\ \frac{1}{\pi} \left(\frac{\pi}{2} + \sin^{-1}\left(\frac{\alpha}{A}\right)\right) & \alpha < A, \\ 1 & \alpha \ge A. \end{cases}$	$\begin{cases} 0 & \alpha < 0, \\ 1 - e^{-\lambda\alpha} & \alpha \ge 0. \end{cases}$
linearer Mittelwert	m	π	0	Υ
Varianz	$\frac{\left(\frac{A}{2}\right)^2}{3} = \frac{A^2}{12}$	σ^2	$\frac{A^2}{2}$	$\frac{1}{\lambda^2}$
Leistung (quad. Mittelwert)	$m^2 + \frac{A^2}{12}$	$\mu^2 + \sigma^2$	$\frac{A^2}{2}$	2 <u>7</u> 2

1.5.7 Zusammenstellung einiger Dichtefunktionen

Tabelle 1.4: Zusammenstellung einiger Verteilungen, wobei die *Q*-Funktion gemäss Formel 1.36 definiert ist. Ferner gilt: *A*, *m*, μ , λ , $\sigma \in \mathbb{R}$ und *A*, λ , $\sigma > 0$.

Anhang zum Kapitel 1 1.A Tabelle der *Q*-Funktion

ξ	$Q(\xi)$	ξ	$Q(\xi)$	$Q(\xi)$	ξ	$Q(\xi)$	ξ	$Q(\xi)$	ξ
0.0	5.000e - 01	4.0	3.167e - 05	5e - 01	0.000	1e - 05	4.265	6e - 10	6.080
0.1	4.602e - 01	4.1	2.066e - 05	4e - 01	0.253	9e - 06	4.288	5e - 10	6.109
0.2	4.207e - 01	4.2	$1.335e\!-\!05$	3e - 01	0.524	8e - 06	4.314	4e - 10	6.145
0.3	3.821e - 01	4.3	8.540e - 06	2e - 01	0.842	7e - 06	4.344	3e - 10	6.190
0.4	3.446e - 01	4.4	5.413e - 06	1e - 01	1.282	6e - 06	4.378	2e - 10	6.254
0.5	$3.085e\!-\!01$	4.5	3.398e - 06	9e - 02	1.341	5e - 06	4.417	1e - 10	6.361
0.6	2.743e - 01	4.6	2.112e - 06	8e - 02	1.405	4e - 06	4.465	9e - 11	6.378
0.7	2.420e - 01	4.7	1.301e - 06	7e - 02	1.476	3e - 06	4.526	8e - 11	6.396
0.8	2.119e - 01	4.8	$7.933e\!-\!07$	6e - 02	1.555	2e - 06	4.611	7e - 11	6.416
0.9	1.841e - 01	4.9	4.792e - 07	5e - 02	1.645	1e - 06	4.753	6e - 11	6.439
1.0	1.587e - 01	5.0	2.867e - 07	4e - 02	1.751	9e - 07	4.775	5e - 11	6.467
1.1	$1.357e\!-\!01$	5.1	$1.698e\!-\!07$	3e - 02	1.881	8e - 07	4.798	4e - 11	6.501
1.2	1.151e - 01	5.2	9.964e - 08	2e - 02	2.054	7e - 07	4.825	3e - 11	6.544
1.3	9.680e - 02	5.3	5.790e - 08	1e - 02	2.326	6e - 07	4.856	2e - 11	6.604
1.4	8.076e - 02	5.4	3.332e - 08	9e - 03	2.366	5e - 07	4.892	1e - 11	6.706
1.5	6.681e - 02	5.5	1.899e - 08	8e - 03	2.409	4e - 07	4.935	9e - 12	6.721
1.6	5.480e - 02	5.6	1.072e - 08	7e - 03	2.457	3e - 07	4.991	8e - 12	6.739
1.7	4.457e - 02	5.7	5.990e - 09	6e - 03	2.512	2e - 07	5.069	7e - 12	6.758
1.8	$3.593e\!-\!02$	5.8	3.316e - 09	5e - 03	2.576	1e - 07	5.199	6e - 12	6.780
1.9	2.872e - 02	5.9	1.818e - 09	4e - 03	2.652	9e - 08	5.219	5e - 12	6.807
2.0	$2.275e\!-\!02$	6.0	9.866e - 10	3e - 03	2.748	8e - 08	5.241	4e - 12	6.839
2.1	1.786e - 02	6.1	$5.303e\!-\!10$	2e - 03	2.878	7e - 08	5.265	3e - 12	6.880
2.2	1.390e - 02	6.2	$2.823e\!-\!10$	1e - 03	3.090	6e - 08	5.293	2e - 12	6.937
2.3	$1.072e\!-\!02$	6.3	$1.488e\!-\!10$	9e - 04	3.121	5e - 08	5.327	1e - 12	7.034
2.4	8.198e - 03	6.4	$7.769e\!-\!11$	8e - 04	3.156	4e - 08	5.367	9e - 13	7.049
2.5	6.210e - 03	6.5	4.016e - 11	7e - 04	3.195	3e - 08	5.419	8e - 13	7.066
2.6	4.661e - 03	6.6	$2.056e\!-\!11$	6e - 04	3.239	2e - 08	5.491	7e - 13	7.084
2.7	3.467e - 03	6.7	$1.042e\!-\!11$	5e - 04	3.291	1e - 08	5.612	6e - 13	7.105
2.8	2.555e - 03	6.8	5.231e - 12	4e - 04	3.353	9e - 09	5.630	5e - 13	7.131
2.9	1.866e - 03	6.9	2.600e - 12	3e - 04	3.432	8e - 09	5.650	4e - 13	7.161
3.0	1.350e - 03	7.0	1.280e - 12	2e - 04	3.540	7e - 09	5.673	3e - 13	7.200
3.1	9.676e - 04	7.1	$6.238e\!-\!13$	1e - 04	3.719	6e - 09	5.700	2e - 13	7.256
3.2	6.871e - 04	7.2	3.011e - 13	9e - 05	3.746	5e - 09	5.731	1e - 13	7.349
3.3	4.834e - 04	7.3	1.439e - 13	8e - 05	3.775	4e - 09	5.768	9e - 14	7.363
3.4	3.369e - 04	7.4	6.809e - 14	7e - 05	3.808	3e - 09	5.817	8e - 14	7.379
3.5	2.326e - 04	7.5	3.191e - 14	6e - 05	3.846	2e - 09	5.884	7e - 14	7.396
3.6	1.591e - 04	7.6	1.481e - 14	5e - 05	3.891	1e - 09	5.998	6e - 14	7.417
3.7	1.078e - 04	7.7	$6.803e\!-\!15$	4e - 05	3.944	9e - 10	6.015	5e - 14	7.441
3.8	7.235e - 05	7.8	3.095e - 15	3e - 05	4.013	8e - 10	6.034	4e - 14	7.470
3.9	4.810e - 05	7.9	$1.395e\!-\!15$	2e - 05	4.107	7e - 10	6.055	3e - 14	7.508
4.0	3.167e - 05	8.0	6.221e - 16	1e - 05	4.265	6e - 10	6.080	2e - 14	7.561

 $Q(\xi)=rac{1}{\sqrt{2\pi}}\int\limits_{\xi}^{\infty}e^{-rac{y^2}{2}}dy$

Anhang zum Kapitel 2

2.A Tabelle von Fourier-Transformationspaaren

Die Fourier-Transformationspaare sind zum Teil von [6, 47, 69] entnommen. Es gilt jeweils: $0 < (\alpha, \beta, t_0, \omega_0, A) \in \mathbb{R}, n \in \mathbb{N}$.

 Tabelle 2.3:
 Fourier-Transformationspaare

 Tabelle 2.4:
 Fourier-Transformationspaare

 Tabelle 2.5:
 Fourier-Transformationspaare

 Tabelle 2.6:
 Fourier-Transformationspaare

 Tabelle 2.7: Fourier-Transformationspaare

 Tabelle 2.8:
 Fourier-Transformationspaare

#	Zeitfunktion: $f(t)$	${ m Spektral funktion}: F(j\omega)$
30	$A \cdot u(t)$	$A \cdot \left(\pi \cdot \delta(\omega) - j\frac{1}{\omega}\right)$
	2.5 2.5 1.5 1.5 0.5	$\begin{array}{c} 20\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 2\\ 3\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2$
31	$\frac{1}{t}$	$j\pi sgn(\omega)$
32	t^{-n}	$-j\pi \frac{(-j\omega)^{n-1}}{(n-1)!}sgn(\omega)$
33		$-\frac{2}{\omega^2}$
34	$r(t) = t \cdot u(t)$	$\frac{j\pi \frac{d\delta(\omega)}{dt} - \frac{1}{\omega^2}}{2iA}$
35	$A \cdot sgn(t)$	$\frac{-2jn}{\omega}$
30	$t \ nsgn(t)$	$\frac{(-j)^{n+1}}{\sqrt{2-j}}$
37	$\sqrt{ t }$	$-\sqrt{\frac{2\pi}{ \omega }}$
38	$A \cdot \sum_{\substack{n = -\infty \\ \infty}}^{\infty} \delta(t - n \cdot t_0)$	$\frac{2\pi A}{t_0} \cdot \sum_{n=-\infty}^{\infty} \delta(\omega - n \cdot \frac{2\pi}{t_0})$
39	$A \cdot \sum_{n=-\infty}^{\infty} \delta(t - n \cdot t_0 - \frac{t_0}{2})$	$\frac{2\pi A}{t_0} \cdot \sum_{n=-\infty}^{\infty} (-1)^n \delta(\omega - n \cdot \frac{2\pi}{t_0})$
40	$A \cdot \sum_{n=0}^{N-1} \delta(t - n \cdot t_0 - \beta + \frac{(N-1)t_0}{2})$	$Ae^{j\beta\omega}\frac{\sin(N\omega t_o/2)}{\sin(\omega t_0/2)}$
41	$\sum_{n=-\infty}^{\infty} \delta(t - n \cdot t_0) \left(A + \alpha \cos(\omega_0 t)\right)$	$\frac{2\pi}{t_0} \cdot \sum_{n=-\infty}^{\infty} \left(A\delta(\omega - n\frac{2\pi}{t_0}) + \frac{\alpha}{2} \left(\delta(\omega - n\frac{2\pi}{t_0} + \omega_0) + \delta(\omega - n\frac{2\pi}{t_0} - \omega_0) \right) \right)$
42	$\sum_{n=-\infty}^{\infty} \delta(t - n \cdot t_0) \left(A + \alpha \sin(\omega_0 t)\right)$	$\frac{2\pi}{t_0} \cdot \sum_{n=-\infty}^{\infty} \left(A\delta(\omega - n\frac{2\pi}{t_0}) + \frac{j\alpha}{2} \left(\delta(\omega - n\frac{2\pi}{t_0} + \omega_0) - \delta(\omega - n\frac{2\pi}{t_0} - \omega_0) \right) \right)$
43	$A\delta(t)$	A
44	$A\delta(t-t_0)$	$Ae^{-jt_0\omega}$
45	$A\left(\delta(t+t_0)+\delta(t-t_0)\right)$	$2A\cos(\omega t_0)$
$\frac{46}{47}$	$\frac{e^{j\beta t} \left(A + \alpha \cos(\omega_0 t)\right)}{e^{j\beta t} \left(A + \alpha \sin(\omega_0 t)\right)}$	$\frac{2\pi \left(A\delta(\omega-\beta)+\frac{\alpha}{2}(\delta(\omega-\beta+\omega_0)+\delta(\omega-\beta-\omega_0))\right)}{2\pi \left(A\delta(\omega-\beta)+\frac{j\alpha}{2}(\delta(\omega-\beta+\omega_0)-\delta(\omega-\beta-\omega_0))\right)}$
48	$\frac{\partial \left(1 - e^{-at}\right)u(t)}{d(1 - e^{-at})u(t)}$	$\frac{1}{\pi A\delta(\omega) - A\left(\frac{a}{2+\omega^2} + \frac{ja^2}{\omega(2+\omega^2)}\right)}$
49	$sgn(t) \cdot A \cdot e^{-a t }$	$\frac{(a^2+\omega^2)}{(a^2+\omega^2)} = \frac{(a^2+\omega^2)}{(a^2+\omega^2)}$
50	$A \cdot e^{j\omega_0 t - a t }$	$\frac{2A}{a} \cdot \frac{a^2}{(\omega - \omega_0)^2 + a^2}$
51	$A \cdot \cos(\omega_0 t) e^{-a t }$	$\frac{A}{a} \cdot \frac{2a^2(a^2 + \omega_0^2 + \omega^2)}{(a^2 + \omega_0^2 - \omega^2)^2 + 4a^2\omega^2}$
52	$A \cdot p_{\alpha}(t-\beta)$	$2Ae^{-j\beta\omega}\frac{\sin(\alpha\omega)}{\omega} = \frac{jA}{\omega}\left(e^{-j\omega(\beta+\alpha)} - e^{-j\omega(\beta-\alpha)}\right)$
53	$A \cdot e^{j\omega_0 t} p_\alpha(t)$	$2A \frac{\sin(\alpha(\omega_0 - \omega))}{\omega_0 - \omega}$
54	$A \cdot (p_{\alpha}(t-\beta) + p_{\alpha}(t+\beta))$	$2A \frac{\cos(\beta\omega)\sin(\alpha\omega)}{\omega}$

 Tabelle 2.9:
 Fourier-Transformationspaare

2.B Tabelle von Laplace-Transformationspaaren

Die Transformationspaare sind mehrheitlich [6, 7, 21, 47, 69] entnommen. Es gilt: $0 < \alpha \in \mathbb{R}, n \in \mathbb{N}, a, \nu \in \mathbb{C}, s = \sigma + j\omega$ und somit $\Re\{s\} = \sigma$ und $\Im\{s\} = \omega$.

#	f(t), wobei $f(t) = 0$ für $t < 0$	F(s) mit Konvergenzbereich
1	$\frac{d^n f(t)}{dt^n}$	$s^{n}F(s) - s^{n-1}f(0) - s^{n-2}\frac{df(0)}{dt} - \dots - \frac{d^{n-1}f(0)}{d^{n-1}t}$
2	$\int_{0}^{t} f(x) dx$	$\frac{F(s)}{s}$
3	$\frac{f(t)}{t}$	$\int\limits_{0}^{\infty} F(s) ds$
4	$f(t-\alpha)u(t-\alpha)$	$e^{-s\alpha}F(s)$
5	$f(t+\alpha)u(t+\alpha)$	$e^{+s\alpha}\left(F(s) - \int\limits_{0}^{a} e^{-st}f(t)dt\right)$
6	$f_1(t) * f_2(t) * f_3(t)$	$F_1(s) \cdot F_2(s) \cdot F_3(s)$
7	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi j}(F_1(s) * F_2(s))$
8	$\lim_{t \to 0^+} f(t)$	$\lim_{s \to \infty} sF(s)$
9	$\lim_{t \to \infty} f(t)$	$\lim_{s \to 0} sF(s)$
10	u(t)	$\frac{1}{s}$ mit $\sigma > 0$
11	$\delta(t)$	$1 \text{ mit } \sigma \in \mathbb{R}$
12	$\frac{d\delta(t)}{dt}$	8
13	$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$
14	$\frac{t^{n-1}e^{-at}}{(n-1)!}$	$\frac{1}{(s-a)^n}$
15	$\frac{1}{\sqrt{\pi t}}$	$\frac{1}{\sqrt{s}}$
16	$\frac{n!4^nt^{n-\frac{1}{2}}}{(2n)!\sqrt{\pi}}$	$\frac{1}{s^n\sqrt{s}}$
17	$J_{\nu}(at) \operatorname{mit} \Re\{\nu\} > -1$	$\frac{\left(\sqrt{s^2+a^2}-s\right)^{\nu}}{a^{\nu}\sqrt{s^2+a^2}} \text{ mit } \sigma > \Im\{a\} $
18	$I_{\nu}(at) \operatorname{mit} \Re\{\nu\} > -1$	$\frac{\left(s-\sqrt{s^2-a^2}\right)^{\nu}}{a^{\nu}\sqrt{s^2-a^2}} \text{ mit } \sigma > \Re\{a\} $
19	$\frac{\sin(\alpha t)}{t}$	$\arctan\left(\frac{\alpha}{s}\right) \mod \sigma > 0$
		\tan^{-1}

 Tabelle 2.10:
 Laplace-Transformationspaare

 $J_{\nu}(at)$ ist die Bessel- oder Zylinderfunktion ν . Ordnung 1. Gattung und $I_{\nu}(at)$ ist die modifizierte Bessel-Funktion ν . Ordnung [7].

Die folgende Tabelle ist nach dem Grad des Nenners geordnet. Die Tabelle ist bis zum Nennergrad 3 vollständig und stammt von [6, 21].

F(s),	Konvergenzbereich	$f(t)$, wobei $f(t) = 0$ für $t < 0$ mit $(\alpha, \beta, \gamma) \in \mathbb{C}$.
1,	$\sigma \in \mathbb{R}$	$\delta(t)$
$\left[\frac{1}{s},\right]$	$\sigma > 0$	$1 \ (\equiv u(t))$
$\frac{1}{s+\alpha}$,	$\sigma > - \Re\{\alpha\}$	$e^{-\alpha t}$
$\frac{1}{s^2}$,	$\sigma > 0$	
$\frac{1}{s(s+\alpha)}$,	$\sigma>-\min\{\Re\{\alpha\},0\}$	$\frac{1-e^{-\alpha t}}{\alpha}$
$\frac{1}{(s+\alpha)(s+\beta)},$	$\sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\}$	$\frac{e^{-\alpha t} - e^{-\beta t}}{\beta - \alpha}$
$\frac{s}{(s+\alpha)(s+\beta)},$	$\sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\}$	$\frac{\alpha e^{-\alpha t} - \beta e^{-\beta t}}{\alpha - \beta}$
$\frac{1}{(s+\alpha)^2},$	$\sigma > - \Re\{\alpha\}$	$te^{-\alpha t}$
$\frac{s}{(s+\alpha)^2},$	$\sigma > - \Re\{\alpha\}$	$e^{-\alpha t}(1-\alpha t)$
$\frac{1}{s^2-\alpha^2}$,	$\sigma > \Re\{\alpha\} $	$\frac{\sinh(\alpha t)}{\alpha}$
$\frac{s}{s^2-\alpha^2},$	$\sigma > \Re\{\alpha\} $	$\cosh(\alpha t)$
$\frac{1}{s^2+\alpha^2}$,	$\sigma > \Im\{\alpha\} $	$\frac{\sin(\alpha t)}{\alpha}$
$\frac{s}{s^2+\alpha^2},$	$\sigma > \Im\{\alpha\} $	$\cos(\alpha t)$
$\frac{1}{(s+\beta)^2+\alpha^2},$	$\sigma > \Im\{\alpha\} - \Re\{\beta\}$	$\frac{e^{-eta t}\sin(lpha t)}{lpha}$
$\frac{s}{(s+\beta)^2+\alpha^2},$	$\sigma > \Im\{\alpha\} - \Re\{\beta\}$	$\frac{e^{-\beta t}(\alpha\cos(\alpha t) - \beta\sin(\alpha t))}{\alpha}$
$\frac{1}{s^3}$,	$\sigma > 0$	$\frac{t^2}{2}$
$\frac{1}{s^2(s+\alpha)},$	$\sigma > -\min\{\Re\{\alpha\}, 0\}$	$\frac{e^{-\alpha t} + \alpha t - 1}{\alpha^2}$
$\frac{1}{s(s+\alpha)(s+\beta)},$	$\sigma>-\min\{\Re\{\alpha\},\Re\{\beta\},0\}$	$\frac{(\alpha - \beta) + \beta e^{-\alpha t} - \alpha e^{-\beta t}}{\alpha \beta (\alpha - \beta)}$
$\frac{1}{s(s+\alpha)^2},$	$\sigma > -\min\{\Re\{\alpha\}, 0\}$	$\frac{1 - e^{-\alpha t} - \alpha t e^{-\alpha t}}{\alpha^2}$
$\frac{1}{(s+lpha)(s+eta)(s+\gamma)},$	$\sigma>-\min\{\Re\{\alpha\},\Re\{\beta\},\Re\{\gamma\}\}$	$\frac{(\gamma - \beta)e^{-\alpha t} + (\alpha - \gamma)e^{-\beta t} + (\beta - \alpha)e^{-\gamma t}}{(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)}$
$\frac{s}{(s+lpha)(s+eta)(s+\gamma)},$	$\sigma>-\min\{\Re\{\alpha\},\Re\{\beta\},\Re\{\gamma\}\}$	$\frac{\alpha(\beta-\gamma)e^{-\alpha t}+\beta(\gamma-\alpha)e^{-\beta t}+\gamma(\alpha-\beta)e^{-\gamma t}}{(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)}$
$\frac{s^2}{(s+lpha)(s+eta)(s+\gamma)},$	$\sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}, \Re\{\gamma\}\}$	$\frac{-\alpha^2(\beta-\gamma)e^{-\alpha t}-\beta^2(\gamma-\alpha)e^{-\beta t}-\gamma^2(\alpha-\beta)e^{-\gamma t}}{(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)}$
$\frac{1}{(s+lpha)(s+eta)^2},$	$\sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\}$	$\frac{e^{-\alpha t} - [1 + (\beta - \alpha)t]e^{-\beta t}}{(\beta - \alpha)^2}$
$\frac{s}{(s+\alpha)(s+\beta)^2},$	$\sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\}$	$\frac{-\alpha e^{-\alpha t} + [\alpha + t\beta(\beta - \alpha)]e^{-\beta t}}{(\beta - \alpha)^2}$
$rac{s^2}{(s+lpha)(s+eta)^2},$	$\sigma > -\min\{\Re\{\alpha\}, \Re\{\beta\}\}$	$\frac{\alpha^2 e^{-\alpha t} + \beta (\beta - 2\alpha - t\beta^2 + \alpha\beta t) e^{-\beta t}}{(\beta - \alpha)^2}$
$\frac{1}{(s+\alpha)^3}$,	$\overline{\sigma > -\Re\{\alpha\}}$	$\frac{t^2 e^{-\alpha t}}{2}$
$\frac{s}{(s+\alpha)^3}$,	$\sigma > - \Re\{\alpha\}$	$\frac{(2-\alpha t)te^{-\alpha t}}{2}$
$\frac{s^2}{(s+\alpha)^3},$	$\sigma > - \Re\{\alpha\}$	$\frac{(2-4\alpha t+\alpha^2 t^2)e^{-\alpha t}}{2}$
$\frac{1}{s[(s+\beta)^2+\alpha^2]},$	$\sigma > -\min\{\Re\{\beta\} - \Im\{\alpha\} , 0\}$	$\frac{\alpha - e^{-\beta t} [\alpha \cos(\alpha t) + \beta \sin(\alpha t)]}{\alpha (\alpha^2 + \beta^2)}$
$\frac{1}{s(s^2+\alpha^2)},$	$\sigma > \Im\{\alpha\} $	$\frac{1-\cos(\alpha t)}{\alpha^2}$
$\frac{1}{(s+\alpha)(s^2+\beta^2)},$	$\sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}$	$\frac{\beta e^{-\alpha t} + \alpha \sin(\beta t) - \beta \cos(\beta t)}{\beta(\alpha^2 + \beta^2)}$
$\frac{\overline{s}}{(s+\alpha)(s^2+\beta^2)},$	$\sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}$	$\frac{-\alpha e^{-\alpha t} + \alpha \cos(\beta t) + \beta \sin(\overline{\beta t})}{\alpha^2 + \beta^2}$
$\frac{s^2}{(s+\alpha)(s^2+\beta^2)},$	$\sigma > -\min\{- \Im\{\beta\} , \Re\{\alpha\}\}$	$\frac{\alpha^2 e^{-\alpha t} - \alpha\beta \sin(\beta t) + \beta^2 \cos(\beta t)}{\alpha^2 + \beta^2}$
$\frac{1}{(s+\alpha)[(s+\beta)^2+\gamma^2]}, \sigma$	$\gamma > -\min\{\Re\{\alpha\}, \Re\{\beta\} - \Im\{\gamma\} \}$	$\frac{e^{-\alpha t} - e^{-\beta t}\cos(\gamma t) + \frac{\alpha - \beta}{\gamma} e^{-\beta t}\sin(\gamma t)}{(\beta - \alpha)^2 + \gamma^2}$
$\frac{s}{(s+\alpha)[(s+\beta)^2\pm \alpha^{21}]}, \sigma$	$T > -\min\{\Re\{\alpha\}, \Re\{\beta\} - \Im\{\gamma\} \}$	$\frac{-\alpha e^{-\alpha t} + \alpha e^{-\beta t}\cos(\gamma t) - \frac{\alpha \beta - \beta^2 - \gamma^2}{\gamma} e^{-\beta t}\sin(\gamma t)}{(\beta - \alpha)^2 + \gamma^2}$
$\frac{s^2}{(s+\alpha)[(s+\beta)^2+\gamma^2]}, \sigma$	$\gamma > -\min\{\Re\{\alpha\}, \Re\{\beta\} - \Im\{\gamma\} \}$	$\frac{\alpha^2 e^{-\alpha t} + [(\alpha - \beta)^2 + \gamma^2 - \alpha^2] e^{-\beta t} \cos(\gamma t) - (\alpha \gamma + \beta \left(\gamma - \frac{\beta(\alpha - \beta)}{\gamma}\right)) e^{-\beta t} \sin(\gamma t)}{(\beta - \alpha)^2 + \gamma^2}$
$\frac{1}{s^4}$	$\sigma > 0$	$\frac{t^3}{6}$
0		

 Tabelle 2.11:
 Laplace-Transformationspaare

Anhang zum Kapitel 7

7.A Nomogramme zur Bestimmung der Filterordnung

Durch die Vorgaben von **minimaler Dämpfung** im **Sperrbereich** (A_{\min}) , der **maximalen Dämpfung** im **Durchlassbereich** (A_{\max}) , sowie der beiden normierten Eckfrequenzen Ω_S und Ω_D , lassen sich die dafür benötigte **Filterordnung** mit Hilfe der nachfolgenden **Nomogramme** bestimmen. Dazu bestimmt man die Lage des Punktes P_5 aus den Werten A_{\max} , A_{\min} und Ω_S/Ω_D wie in der folgenden Skizze gezeigt. Die benötigte Filterordnung für das Tiefpassfilter entspricht dann dem Wert der nächst höher gelegenen Kurve $(\rightarrow n)$.

Abbildung 7.107: Gebrauch der Nomogramme

Aus den folgenden drei Nomogrammen (Abb. 7.108-7.110) ist ersichtlich, dass für die **Filterordnung** \boldsymbol{n} (für fixe A_{\min} , A_{\max} und $\Omega = \Omega_S / \Omega_D = \omega_S / \omega_D = f_S / f_D$) gilt:

 $n_{ ext{Butterworth}} \geq n_{ ext{Tschebyscheff}_{(ext{I}, ext{II})}} \geq n_{ ext{Cauer}}.$

Zur Bestimmung der Filterordnung können auch die entsprechenden Formeln oder MATLAB-Befehle verwendet werden.

Abbildung 7.108: Nomogramm für Butterworth-Filter der Ordnung n = 1...20Es kann auch der MATLAB-Befehl buttord verwendet werden oder Formel 7.5:

$$n = \left[\frac{\log \left[\frac{10^{A_{\min}/10} - 1}{10^{A_{\max}/10} - 1} \right]}{2 \cdot \log \left(\Omega_S / \Omega_D \right)} \right].$$

Abbildung 7.109: Nomogramm für Tschebyscheff (I und II)-Filter der Ordnung n = 1...20Man kann auch den MATLAB-Befehl cheblord (cheb2ord) verwenden oder Formel 7.6:

$$n = \left[\frac{\operatorname{Arcosh}\sqrt{\frac{10^{A_{\min}/10} - 1}{10^{A_{\max}/10} - 1}}}{\operatorname{Arcosh}\left(\Omega_S/\Omega_D\right)}\right].$$

Abbildung 7.110: Nomogramm für Cauer-Filter (elliptische Filter) der Ordnung $n = 1 \dots 13$ Man kann auch den MATLAB-Befehl ellipord verwenden oder Formel 7.7:

$$n = \left[\frac{K\left(\left(\frac{\Omega_D}{\Omega_S} \right)^2 \right) K\left(1 - \frac{10^{A_{\max}/10} - 1}{10^{A_{\min}/10} - 1} \right)}{K\left(1 - \left(\frac{\Omega_D}{\Omega_S} \right)^2 \right) K\left(\frac{10^{A_{\max}/10} - 1}{10^{A_{\min}/10} - 1} \right)} \right], \text{ mit } K(k) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - k \sin^2 \theta}}$$

7.B Normierte Tiefpassübertragungsfunktionen

7.B.1 Butterworth-Filter

Ansatz:
$$|H(j\Omega)|^2 = \frac{1}{1 + \Omega^{2n}}$$

Zur Tabellierung der auf die 3.01 dB-Grenzfrequenz normierten Übertragungsfunktionen H(S) wurde $\max_{S} |H(S)| = 1$ gewählt, wobei

$$H(S) = \frac{1}{D(S)}$$
 und $D(S) = S^n + b_{n-1}S^{n-1} + \ldots + b_2S^2 + b_1S + b_0$

Die Koeffizienten von D(S) können den Tabellen 7.2 und 7.3 entnommen oder mit Hilfe des MATLAB-Befehls buttap bestimmt werden. Die 3.01 dB-Grenzfrequenz kann mit der Beziehung

$$\omega_{3.01dB} = \underbrace{\sqrt[2]{n} \sqrt{\frac{1}{10^{A_{\max}/10} - 1}}}_{\Omega_{3.01 \ dB}} \cdot \omega_D \tag{7.23}$$

aus den Grössen ω_D und A_{\max} berechnet werden.

n	b_0	b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9
1	1									
2	1	$\sqrt{2}$								
3	1	2	2							
4	1	2.61313	3.41421	2.61313						
5	1	3.23607	5.23607	5.23607	3.23607					
6	1	3.86370	7.46410	9.14162	7.46410	3.86370				
7	1	4.49396	10.09783	14.59179	14.59179	10.09783	4.49396			
8	1	5.12583	13.13707	21.84615	25.68836	21.84615	13.13707	5.12583		
9	1	5.75877	16.58172	31.16344	41.98638	41.98638	31.16344	16.58172	5.75877	
10	1	6.39245	20.43173	42.80206	64.88240	74.23343	64.88240	42.80206	20.43173	6.39245

Tabelle 7.2: Koeffizienten *b* von D(S) der normierten UTF $H(S) = \frac{1}{D(S)}$ der kritisch-gedämpften Butterworth-Tiefpass-Filter ($|H(j)| = \frac{1}{\sqrt{2}}$

Das bedeutet z. B., dass die UTF des normierten Butterworth-Tiefpass Filters 4. Ordnung wie folgt aussieht (Tabellen 7.2 und 7.3):

$$H(S) = \frac{1}{S^4 + 2.61313S^3 + 3.41421S^2 + 2.61313S + 1} = \frac{1}{(S^2 + 1.848S + 1)(S^2 + 0.765S + 1)}$$

n	D(S)
1	(1+S)
2	$(1+\sqrt{2}S+S^2)$
3	$(1+S)(1+S+S^2)$
4	$(1+0.765S+S^2)(1+1.848S+S^2)$
5	$(1+S)(1+0.618S+S^2)(1+1.618S+S^2)$
6	$(1+0.518S+S^2)(1+1.414+S^2)(1+1.932S+S^2)$
7	$(1+S)(1+0.445S+S^2)(1+1.247S+S^2)(1+1.802S+S^2)$
8	$(1+0.390S+S^2)(1+1.111S+S^2)(1+1.663S+S^2)(1+1.962S+S^2)$
9	$(1+S)(1+0.347S+S^2)(1+S+S^2)(1+1.532S+S^2)(1+1.880S+S^2)$
10	$(1+0.313S+S^2)(1+0.908S+S^2)(1+1.414S+S^2)(1+1.782S+S^2)(1+1.975S+S^2)$

Tabelle 7.3: Faktorzerlegung von D(S)

n	2	3	4	5	6	7	8	9	10
q_{p1}	0.707	1	1.307	1.618	1.932	2.247	2.563	2.8794	3.1962
q_{p2}			0.541	0.618	0.707	0.802	0.900	1	1.1013
q_{p3}					0.518	0.555	0.601	0.6527	0.7071
q_{p4}							0.510	0.5321	0.5612
q_{p5}									0.5062

Die konjugiert-komplexen Polpaare weisen folgende Polgüten auf:

Tabelle 7.4: Polgüten der konj.-kompl. Polpaare der Butterworth-Filter

Aufgabe 7.7:

Bestimmen Sie die Polgüten der Butterworth-Filter von Tabelle 7.4 mit Hilfe des MATLAB-Befehl buttap.

7.B.2 Kritisch-gedämpfte Filter (Gauss-Filter)

Zur Tabellierung der normierten Übertragungsfunktionen wurde $\max_{S} |H(S)| = 1$, sowie

 $|H(j)| = \frac{1}{\sqrt{2}}$ (auf 3.01 dB-Grenzfrequenz normierte Überträgungsfunktionen) gewählt:

$$H(S) = \frac{K}{D(S)}$$
, wobei $D(S) = S^n + b_{n-1}S^{n-1} + \ldots + b_2S^2 + b_1S + b_0$,

wobei immer gilt: $K = b_0$.

-										
n	$b_0 = K$	b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9
1	1									
2	2.4142	3.1075								
3	7.5464	11.5420	5.8844							
4	27.9335	48.6020	31.7113	9.1958						
5	117.2829	226.1297	174.3977	67.2502	12.9663					
6	544.50	1143.3	1000.2	466.69	122.49	17.146				
7	2748.4	6206.9	6007.6	3230.4	1042.2	201.75	21.697			
8	14902.4	35866.6	37766.0	22723.4	8545.3	2056.6	309.37	26.5918		
9	86027.3	219071.5	247943.6	163695.5	69476.1	19658.1	3708.2	449.66	31.8079	
10	525025.6	1406573.6	1695730.8	1211455.9	567972.9	182595.8	40765.4	6240.7	626.97	37.327

Tabelle 7.5: Koeffizienten *b* von D(S) und *K* der normierten UTF $H(S) = \frac{K}{D(S)}$ der kritischgedämpften Filter $(|H(j)| = \frac{1}{\sqrt{2}})$

Die Entormierung der Tabellenwerte erfolgt mit $S = \frac{s}{\omega_{3.01dB}}$ mit der maximalen Dämpfung A_{\max} im Durchlassbereich ω_D und der Ordnung n

$$\omega_{3.01dB} = \underbrace{\frac{\sqrt{2^{1/n} - 1}}{\sqrt{10^{\frac{A_{\max}}{10 \cdot n}} - 1}}}_{\Omega_{3.01 \ dB}} \cdot \omega_D.$$
(7.24)

<u>Beispiel 7.27:</u> Die entnormierte UTF eines kritisch-gedämpften Filters der Ordnung 3 ist, mit $A_{\text{max}} = 1$ dB, $\omega_D = 1000 \frac{\text{rad}}{\text{s}}$, und somit $\omega_{3.01\text{dB}} = \frac{\omega_D \cdot \sqrt{2^{1/n} - 1}}{\sqrt{10^{\frac{A_{\text{max}}}{10 \cdot n}} - 1}} = 1.8050 \cdot \omega_D = 1805.0 \frac{\text{rad}}{\text{s}}$ und $S = \frac{s}{\omega_{3.01\text{dB}}} = \frac{s}{1805.0}$.

$$H(s) = \frac{4.43811e10}{s^3 + 1.062154e4s^2 + 3.76057e7s + 4.43811e10},$$

was wir z.B. mit [z n]=lp2lp(7.5464,[1 5.8844 11.5420 7.5464],1805)]; tf(z,n)) erhalten können.

n	D(S)	$\omega_c = \frac{1}{\sqrt{\sqrt[n]{2}-1}}$
1	$(\omega_c + S)^1$	1
2	$(\omega_c + S)^2$	1.5538
3	$(\omega_c + S)^3$	1.9615
4	$(\omega_c + S)^4$	2.2990
5	$(\omega_c + S)^5$	2.5933
6	$(\omega_c + S)^6$	2.8576
7	$(\omega_c + S)^7$	3.0995
8	$(\omega_c + S)^8$	3.3240
9	$(\omega_c + S)^9$	3.5342
10	$(\omega_{c}+S)^{10}$	3.7327

Tabelle 7.6: Faktorzerlegung von D(S)

Bemerkung:

Wählt man als Normierung für jedes der n Teilfilter eines kritisch-gedämpften Filters n. Ordnung $\omega_c = 1$, so erhält man n identische Filter mit jeweils 3.01 dB Dämpfung bei $\omega = 1$, was bedeutet, dass die gesamte UTF bei $\omega = 1$ eine Dämpfung von $n \cdot 3.01$ dB hat. Stellt man diese Filter dar, so erhält man für den Zähler der UTF jeweils 1 und die **Nennerkoeffizienten** ergeben sich zu den **Binomialkoeffizienten**, d. h. zum **Pascalschen Dreieck**.

Beispiel 7.28: UTF des kritisch-gedämpften Filters 5. Ordnung mit $\omega_c = 1$

$$H(s) = \frac{1}{s^5 + 5s^4 + 10s^3 + 10s^2 + 5s + 1}$$

Mit dem Wissen des Pascalschen Dreiecks können wir die UTF jedes kritisch-gedämpften Filters *n*. Ordnung, mit A_{\max} , ω_D , und $\omega_c = \frac{\omega_D}{\sqrt{10^{\frac{A_{\max}}{10\cdot n}} - 1}}$ direkt aufstellen:

$$H(s) = \frac{\omega_c^n}{\sum\limits_{i=0}^n {n \choose i} s^i \omega_c^{n-i}}.$$
(7.25)

Beispiel 7.29: UTF des kritisch-gedämpften Filters 5. Ordnung mit $A_{\rm max}=0.5~{\rm dB}$ und $\omega_D=100$

$$\omega_c = \frac{\omega_D}{\sqrt{10^{\frac{A_{\max}}{10 \cdot n}} - 1}} = \frac{100}{\sqrt{10^{\frac{0.5}{10 \cdot n}} - 1}} = 6.552203 \cdot \omega_D = 655.2203 \frac{\text{rad}}{\text{s}}$$

und somit ist die UTF (z.B. auch mit [z n]=lp2lp(1,[1 5 10 10 5 1],655.2203)]; tf(z,n))

$$H(s) = \frac{1.2079e14}{s^5 + 3.2761e3s^4 + 4.2931e6s^3 + 2.8130e9s^2 + 9.2155e11s + 1.2079e14}$$

Mit bodemag erhalten wir folgende Abbildung:

Abbildung 7.111: Amplitudengang des kritisch-gedämpften Filters 5. Ordnung mit $A_{\text{max}} = 0.5 \text{ dB}$ und $\omega_D = 100 \frac{\text{rad}}{\text{s}}$

7.B.3 Tschebyscheff-Filter (Tschebyscheff-I)

Ansatz:
$$|H(j\Omega)|^2 = \frac{1}{1 + e^2 C_n^2(\Omega)}$$

Die Tschebyscheff-Polynome können der Tabelle 7.7 entnommen werden.

n	$C_n(\Omega)$
0	1
1	Ω
2	$2\Omega^2 - 1$
3	$4\Omega^3 - 3\Omega$
4	$8\Omega^4 - 8\Omega^2 + 1$
5	$16\Omega^5 - 20\Omega^3 + 5\Omega$
6	$32\Omega^6 - 48\Omega^4 + 18\Omega^2 - 1$
7	$64\Omega^7 - 112\Omega^5 + 56\Omega^3 - 7\Omega$
8	$128\Omega^8 - 256\Omega^6 + 160\Omega^4 - 32\Omega^2 + 1$

Tabelle 7.7: Tschebyscheff-Polynome $C_n(\Omega)$

Zur Tabellierung der auf die **Rippelgrenzfrequenz normierten Übertragungs**funktionen wurde $\max|H(S)| = 1$ gewählt:

$$H(S) = \frac{K}{D(S)}$$
, wobei $D(S) = S^n + b_{n-1}S^{n-1} + \ldots + b_2S^2 + b_1S + b_0.$

Die Koeffizienten können mit Hilfe vom MATLAB-Befehl cheb1ap bestimmt werden, oder den Tabellen 7.9 bis 7.18 entnommen werden. Die 3.01 dB-Grenzfrequenz ($\omega_{3.01dB}$) kann mit der Beziehung

$$\omega_{3.01\text{dB}} = \underbrace{\cosh\left[\left(\frac{1}{n}\right)\operatorname{Arcosh}\left(\frac{1}{e}\right)\right]}_{\Omega_{3.01\text{ dB}}} \cdot \omega_D \tag{7.26}$$

aus den Grössen ω_D (Rippelgrenzfrequenz) und $e = \sqrt{10^{A_{\text{max}}/10} - 1}$ bestimmt werden, oder der Tabelle 7.8 entnommen werden.

	n = 1	n = 2	n = 3	n = 4	n = 5	n = 6	n = 7	n = 8
$A_{\rm max}=0.1~{\rm dB}$	6.55220	1.94322	1.38899	1.21310	1.13472	1.09293	1.06800	1.05193
$A_{\rm max}=0.5~{\rm dB}$	2.86278	1.38974	1.16749	1.09310	1.05926	1.04103	1.03009	1.02301
$A_{\rm max} = 1 \ {\rm dB}$	1.96523	1.21763	1.09487	1.05300	1.03381	1.02344	1.01721	1.01316
$A_{\rm max}=2~{\rm dB}$	1.30756	1.07414	1.03273	1.01837	1.01174	1.00815	1.00598	1.00458
$A_{\rm max}=3~{\rm dB}$	1.00238	1.00059	1.00026	1.00015	1.00010	1.00007	1.00005	1.00004

Tabelle 7.8: Verhältnis $\left(\frac{\omega_{3.01dB}}{\omega_D}\right)$ zwischen der 3.01 dB-Grenzfrequenz ($\omega_{3.01dB}$) und der Rippelgrenzfrequenz (ω_D)

Aufgabe 7.8:

Wie gross ist das Verhältnis von $\left(\frac{\omega_{3.01dB}}{\omega_D}\right)$ bei einem Tschebyscheff-Filter der Ordnung n = 23 mit Rippel e = 0.05? Wie gross ist A_{max} ?

In den Tabellen 7.9 bis 7.23 sind die Werte jeweils auf die entsprechenden **Rippeleck**frequenzen normiert. D. h., dass nur bezüglich der **Durchlassbereichseckfrequenz** ω_D entormiert werden muss.

n	b_0	b_1	b_2	b_3	b_4	b_5	b_6	b_7	K
1	6.55220								6.55220
2	3.31329	2.37209							3.27610
3	1.63809	2.62953	1.93883						1.63805
4	0.82851	2.02550	2.62680	1.80377					0.819025
5	0.40951	1.42556	2.39696	2.77071	1.74396				0.4095127
6	0.20713	0.90176	2.04784	2.77908	2.96575	1.71217			0.2047564
7	0.10238	0.56179	1.48293	2.70514	3.16925	3.18350	1.69322		0.102378
8	0.05179	0.32645	1.06667	2.15932	3.41855	3.56485	3.41297	1.68104	0.0511891

Tabelle 7.9: Koeffizienten von D(S) für eine UTF mit 0.1 dB Rippel $(e = 0.152620 = \sqrt{10^{0.1/10} - 1})$

Aufgabe 7.9:

Bestimmen Sie für ein normiertes Tschebyscheff-TP-Filter der Ordnung 6 alle Koeffizienten b_0 bis b_6 sowie K. Was ist die Beziehung von K und b_0 ?

n	b_0	b_1	b_2	b_3	b_4	b_5	b_6	b_7	K
1	2.86278								2.86278
2	1.51620	1.42562							1.43129
3	0.71569	1.53490	1.25291						0.71569
4	0.37905	1.02546	1.71687	1.19739					0.35785
5	0.17892	0.75252	1.30957	1.93737	1.17249				0.17892
6	0.09476	0.43237	1.17186	1.58976	2.17184	1.15918			0.08946
7	0.04473	0.28207	0.75565	1.64790	1.86941	2.41265	1.15122		0.04473
8	0.02369	0.15254	0.57356	1.14859	2.18402	2.14922	2.65675	1.14608	0.02237

Tabelle 7.10: Koeffizienten von D(S) für eine UTF mit 0.5 dB Rippel (e = 0.349)

Das bedeutet z.B., dass die UTF des normierten Tschebyscheff-I Tiefpass-Filters 4. Ordnung mit 0.5 dB Rippel wie folgt aussieht:

$H(S) = \frac{0.35785}{S^4 + 1.19739 \cdot S^3 + 1.71687 \cdot S^2 + 1.02546 \cdot S + 0.37905}$

und die bezüglich $\omega_D = 100 \frac{\text{rad}}{\text{s}}$ entnormierte **UTF** $\left(S \to \frac{s}{\omega_D} = \frac{s}{100}\right)$ wie folgt lautet¹⁰: $H(s) = \frac{35785000}{s^4 + 119.739s^3 + 17168.7s^2 + 1025460s + 37905000}.$

n	b_0	b_1	b_2	b_3	b_4	b_5	b_6	b_7	K
1	1.96523								1.96523
2	1.10251	1.09773							0.98261
3	0.49131	1.23841	0.98834						0.49131
4	0.27563	0.74262	1.45392	0.95281					0.24565
5	0.12283	0.58053	0.97440	1.68882	0.93682				0.12283
6	0.06891	0.30708	0.93935	1.20214	1.93083	0.92825			0.06143
7	0.03071	0.21367	0.54862	1.35754	1.42879	2.17608	0.92312		0.03071
8	0.01723	0.10734	0.44783	0.84682	1.83690	1.65516	2.42303	0.91981	0.01535

Tabelle 7.11: Koeffizienten von D(S) für eine UTF mit 1 dB Rippel (e = 0.509)

¹⁰Das Resultat erhalten wir einfach mit: [z n]=lp2lp(0.35785,[1 1.19739 1.71687 1.02546 0.37905],100), tf(z,n).

n	b_0	b_1	b_2	b_3	b_4	b_5	b_6	b_7	K
1	1.30756								1.30756
2	0.82302	0.80382							0.65378
3	0.32689	1.02291	0.73782						0.32689
4	0.20577	0.51680	1.25648	0.71622					0.16345
5	0.08172	0.45935	0.69348	1.49954	0.70646				0.08172
6	0.05144	0.21027	0.77146	0.86701	1.74586	0.70123			0.04086
7	0.02042	0.16609	0.38251	1.14444	1.03922	1.99353	0.69789		0.02043
8	0.01286	0.07294	0.35870	0.59822	1.57958	1.21171	2.24225	0.69606	0.01022

Tabelle 7.12: Koeffizienten von D(S) für eine UTF mit 2 dB Rippel (e = 0.765)

n	b_0	b_1	b_2	b_3	b_4	b_5	b_6	b_7	K
1	1.00238								1.00238
2	0.70795	0.64490							0.50119
3	0.25059	0.92835	0.59724						0.25059
4	0.17699	0.40477	1.16912	0.58158					0.12530
5	0.06264	0.40794	0.54886	1.41498	0.57443				0.06265
6	0.04425	0.16343	0.69910	0.69061	1.66285	0.57070			0.03132
7	0.01566	0.14615	0.30002	1.05184	0.83144	1.91155	0.56842		0.01566
8	0.01106	0.05648	0.32076	0.47190	1.46670	0.97195	2.16071	0.56695	0.00783

Tabelle 7.13: Koeffizienten von D(S) für eine UTF mit 3 dB Rippel (e = 0.99762)

n	D(S)	K
1	(6.55220 + S)	6.55220
2	$(3.31329 + 2.37209S + S^2)$	3.27610
3	$(0.969 + S)(1.690 + 0.969S + S^2)$	1.63805
4	$(1.330 + 0.528S + S^2)(0.623 + 1.275S + S^2)$	0.819025
5	$(0.539 + S)(1.195 + 0.333S + S^2)(0.636 + 0.872S + S^2)$	0.4095127
6	$(1.129 + 0.229S + S^2)(0.696 + 0.627S + S^2)(0.263 + 0.856S + S^2)$	0.2047564
7	$(0.377 + S)(1.092 + 0.168S + S^2)(0.753 + 0.470S + S^2)(0.330 + 0.679S + S^2)$	0.102378
8	$(1.069 + 0.128S + S^2)(0.799 + 0.364S + S^2)(0.416 + 0.545S + S^2)(0.146 + 0.643S + S^2)$	0.0511891

Tabelle 7.14: Faktorzerlegung von D(S) für 0.1 dB Rippel (e = 0.153)

n	D(S)	K
1	(2.86278 + S)	2.86278
2	$(1.51620 + 1.42562S + S^2)$	1.43129
3	$(0.626 + S)(1.142 + 0.626S + S^2)$	0.71569
4	$(1.064 + 0.351S + S^2)(0.356 + 0.847S + S^2)$	0.35785
5	$(0.362 + S)(1.036 + 0.224S + S^2)(0.477 + 0.586S + S^2)$	0.17892
6	$(1.023 + 0.155S + S^2)(0.590 + 0.424S + S^2)(0.157 + 0.580S + S^2)$	0.08946
7	$(0.256 + S)(1.016 + 0.114S + S^2)(0.677 + 0.319S + S^2)(0.254 + 0.462S + S^2)$	0.04473
8	$(1.012 + 0.087S + S^2)(0.741 + 0.248S + S^2)(0.359 + 0.372S + S^2)(0.088 + 0.439S + S^2)$	0.02237

Tabelle 7.15: Faktorzerlegung von D(S) für 0.5 dB Rippel (e = 0.349)

n	D(S)	K
1	(1.96523 + S)	1.96523
2	$(1.10251 + 1.09773S + S^2)$	0.98261
3	$(0.494 + S)(0.994 + 0.494S + S^2)$	0.49131
4	$(0.98650 + 0.2791S + S^2)(0.2794 + 0.67374S + S^2)$	0.24565
5	$(0.289 + S)(0.988 + 0.179S + S^2)(0.429 + 0.468S + S^2)$	0.12283
6	$(0.991 + 0.124S + S^2)(0.558 + 0.340S + S^2)(0.125 + 0.464S + S^2)$	0.06143
7	$(0.205 + S)(0.993 + 0.091S + S^2)(0.653 + 0.256S + S^2)(0.230 + 0.370S + S^2)$	0.03071
8	$(0.994 + 0.070S + S^2)(0.724 + 0.199S + S^2)(0.341 + 0.298S + S^2)(0.070 + 0.352S + S^2)$	0.01535

Tabelle 7.16: Faktorzerlegung von D(S) für 1 dB Rippel (e = 0.509)

n	D(S)	K
1	(1.30756 + S)	1.30756
2	$(0.82302 + 0.80382S + S^2)$	0.65378
3	$(0.369 + S)(0.886 + 0.369S + S^2)$	0.32689
4	$(0.929 + 0.210S + S^2)(0.222 + 0.506S + S^2)$	0.16345
5	$(0.218 + S)(0.952 + 0.135S + S^2)(0.393 + 0.353S + S^2)$	0.08172
6	$(0.966 + 0.094S + S^2)(0.533 + 0.257S + S^2)(0.100 + 0.351S + S^2)$	0.04086
7	$(0.155 + S)(0.975 + 0.069S + S^2)(0.635 + 0.194S + S^2)(0.212 + 0.280S + S^2)$	0.02043
8	$(0.980 + 0.053S + S^2)(0.710 + 0.151S + S^2)(0.327 + 0.226S + S^2)(0.057 + 0.266S + S^2)$	0.01022

Tabelle 7.17: Faktorzerlegung von D(S) für 2 dB Rippel (e = 0.765)

n	D(S)	K
1	(1.00238 + S)	1.00238
2	$(0.70795 + 0.64490S + S^2)$	0.50119
3	$(0.299 + S)(0.839 + 0.299S + S^2)$	0.25059
4	$(0.903 + 0.170S + S^2)(0.196 + 0.411S + S^2)$	0.12530
5	$(0.178 + S)(0.936 + 0.110S + S^2)(0.377 + 0.287S + S^2)$	0.06265
6	$(0.955 + 0.076S + S^2)(0.522 + 0.209S + S^2)(0.089 + 0.285S + S^2)$	0.03132
7	$(0.126 + S)(0.966 + 0.056S + S^2)(0.627 + 0.158S + S^2)(0.204 + 0.228S + S^2)$	0.01566
8	$(0.974 + 0.043S + S^{2})(0.704 + 0.123S + S^{2})(0.321 + 0.184S + S^{2})(0.050 + 0.217S + S^{2})$	0.00783

Tabelle 7.18: Faktorzerlegung von D(S) für 3 dB Rippel (e = 0.99762)

Die konjugiert-komplexen Polpaare weisen folgende Polgüten auf:

n	2	3	4	5	6	7	8
q_{p1}	0.767	1.341	2.183	3.282	4.633	6.233	8.082
q_{p2}			0.619	0.915	1.332	1.847	2.453
q_{p3}					0.600	0.847	1.183
q_{p4}							0.593

Tabelle 7.19: Polgüten der konj.-kompl. Polpaare für 0.1 d B
 Rippel der normierten Tschebyscheff-TP-Filter

n	2	3	4	5	6	7	8
q_{p1}	0.864	1.706	2.941	4.545	6.513	8.842	11.531
q_{p2}			0.705	1.178	1.810	2.576	3.466
q_{p3}					0.684	1.092	1.611
q_{p4}							0.677

Tabelle 7.20: Polgüten der konj.-kompl. Polpaare für 0.5 d B
 Rippel der normierten Tschebyscheff-TP-Filter

n	2	3	4	5	6	7	8
q_{p1}	0.957	2.018	3.559	5.556	8.004	10.899	14.241
q_{p2}			0.785	1.399	2.198	3.156	4.266
q_{p3}					0.761	1.297	1.956
q_{p4}							0.753

Tabelle 7.21: Polgüten der konj.-kompl. Polpaare für 1 dB Rippel der normierten Tschebyscheff-TP-Filter

n	2	3	4	5	6	7	8
q_{p1}	1.129	2.552	4.594	7.232	10.462	14.280	18.687
q_{p2}			0.929	1.775	2.844	4.115	5.584
q_{p3}					0.902	1.645	2.533
q_{p4}							0.892

Tabelle 7.22: Polgüten der konj.-kompl. Polpaare für 2 dB Rippel der normierten Tschebyscheff-TP-Filter

n	2	3	4	5	6	7	8
q_{p1}	1.305	3.068	5.578	8.818	12.780	17.464	22.870
q_{p2}			1.076	2.138	3.458	5.021	6.825
q_{p3}					1.044	1.983	3.080
q_{p4}							1.034

Tabelle 7.23: Polgüten der konj.-kompl. Polpaare für 3 dB Rippel der normierten Tschebyscheff-TP-Filter

7.B.4 Bessel-Filter

Ansatz:
$$H(S) = K \cdot e^{-ST_0} \approx \frac{K}{B_n(S)} = \frac{K}{S^n + \beta_{n-1}S^{n-1} + \ldots + \beta_2 S^2 + \beta_1 S + \beta_0}$$

Die Bessel-Polynome können der Tabelle 7.24 entnommen werden.

n	$\beta_0 = K$	β_1	β_2	β_3	β_4	β_5	β_6	β_7	β_8	β_9
1	1									
2	3	3								
3	15	15	6							
4	105	105	45	10						
5	945	945	420	105	15					
6	10395	10395	4725	1260	210	21				
7	135135	135135	62370	17325	3150	378	28			
8	2027025	2027025	945945	270270	51975	6930	630	36		
9	34459425	34459425	16216200	4729725	945945	135135	13860	990	45	
10	654729075	654729075	310134825	91891800	18918900	2837835	315315	25740	1485	55

Tabelle 7.24: Koeffizienten β der Bessel-Polynome $B_n(S)$ $(K = \beta_0)$ mit $T_0 = 1$

Aufgabe 7.10:

Bestimmen Sie die Koeffizienten des Bessel-Polynomes $B_{13}(S)$ (Tipp: Verwenden Sie die Rekursionsformel 7.4.7).
Zur Tabellierung der auf die 3 dB-Grenzfrequenz normierten Übertragungsfunktionen

$$H(S) = \frac{K}{D(S)} \quad \text{mit} \quad D(S) = S^{n} + b_{n-1}S^{n-1} + \ldots + b_{2}S^{2} + b_{1}S + b_{0}$$

wurde $\max_{S} |H(S)| = 1$ gewählt. Die Koeffizienten *b* können den Tabellen 7.26 und 7.27 entnommen werden. Der Zusammenhang zwischen dem Verhältnis der 3.01 dB-Grenzfrequenz $\omega_{3.01dB}$ und ω_D sowie A_{\max} kann mit folgender Abb. 7.112 bestimmt werden:

Abbildung 7.112: Graphen A_{max} der normierten Bessel-Tiefpassfilter der Ordnung 1...10 in Funktion von $\Omega = \omega_D / \omega_{3.01 \text{dB}}$

n	1	2	3	4	5	6	7	8	9	10
T_0	1	1.3617	1.7557	2.1139	2.4274	2.7034	2.9517	3.1796	3.3917	3.5910
n	11	12	13	14	15	16	17	18	19	20

Tabelle 7.25: Werte der **Gruppenlaufzeit** T_0 zur Umnormierung der Bessel-Polynome $B_n(S)$ auf D(S) für eine Dämpfung von $\sqrt{2} \equiv 3.01$ dB bei $\Omega = 1$, d. h., $\frac{1}{|H(j\Omega)|_{\Omega=1}} \equiv A(1) = \sqrt{2} \equiv 3.01$ dB.

Aufgabe 7.11:

Bestimmen Sie T_0 für das Bessel-Polynom $B_{20}(S)$ und $B_{25}(S)$ (siehe Tabelle 7.25). Für die Koeffizienten b von D(S) des auf die 3.01 dB-Grenzfrequenz normierten Bessel-Tiefpassfilter der Ordnung n gilt: $b_i = \frac{\beta_i}{T_0^{(n-i)}}$, wobei $i = 0, \ldots, n$.

n	$b_0 = K$	b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9
1	1									
2	1.6180	2.2032								
3	2.7718	4.8664	3.4175							
4	5.2582	11.115	10.070	4.7306						
5	11.213	27.218	29.364	17.820	6.1794					
6	26.630	71.991	88.463	63.774	28.734	7.768				
7	69.22	204.32	278.35	228.23	122.49	43.39	9.4860			
8	194.03	616.93	915.41	831.62	508.5	215.58	62.315	11.3221		
9	580.18	1967.8	3140.7	3107	2107.6	1021.2	355.23	86.06	13.268	
10	1836.2	6593.9	11216	11934	8823	4752.5	1896.2	555.8	115.16	15.316

Beispiel 7.30: Berechnung von b_8 des normierten Bessel-Filters der Ordnung n = 10Mit i = 8 und n = 10 folgt mit Tabelle 7.25: $b_8 = \frac{\beta_i}{T_0^{(n-i)}} = \frac{1485}{3.5910^{(10-8)}} = 115.16.$

Tabelle 7.26: Koeffizienten b von D(S), sowie K der UTF H(S)

n	D(S)
1	(1+S)
2	$(1.6180 + 2.2032S + S^2)$
3	$(1.3227 + S)(2.0956 + 2.0948S + S^2)$
4	$(2.0454 + 2.7401S + S^2)(2.5708 + 1.9904S + S^2)$
5	$(1.5023 + S)(2.4222 + 2.7618S + S^2)(3.0814 + 1.9154S + S^2)$
6	$(2.5726 + 3.1430S + S^2)(2.8533 + 2.7637S + S^2)(3.6279 + 1.8613S + S^2)$
7	$(1.6844 + S)(2.9459 + 3.2241S + S^2)(3.3212 + 2.7578S + S^2)(4.2004 + 1.8197 + S^2)$
8	$(3.1629 + 3.5148S + S^2)(3.3566 + 3.2739S + S^2)(3.815 + 2.7477S + S^2)(4.7905 + 1.7857S + S^2) = (3.1629 + 3.5148S + S^2)(3.3566 + 3.2739S + S^2)(3.815 + 2.7477S + S^2)(4.7905 + 1.7857S + 1.7855S + 1.7855S + 1.78555S + 1.7855S + $
9	$(1.8566 + S)(3.5284 + 3.6143S + S^2)(3.7942 + 3.3048S + S^2)(4.3281 + 2.7352S + S^2)(5.3932 + 1.7568S + 1.75$
10	(3.7741 + 3.8552S + S2)(3.9226 + 3.6844S + S2)(4.2527 + 3.3236S + S2)(4.8565 + 2.7214S + S2)(6.0056 + 1.7315S + S2)(4.9565 + 2.7214S + S2)(6.0056 + 1.7315S +

Tabelle 7.27: Faktorzerlegung von D(S)

Die konjugiert-komplexen Polpaare von D(S) weisen folgende Polgüten auf:

n	2	3	4	5	6	7	8	9	10
q_{p1}	0.577	0.691	0.806	0.916	1.023	1.126	1.226	1.322	1.415
q_{p2}			0.522	0.563	0.611	0.661	0.711	0.761	0.810
q_{p3}					0.510	0.532	0.560	0.589	0.620
q_{p4}							0.506	0.520	0.538
q_{p5}									0.504

Tabelle 7.28: Polgüten q_{p_i} der konj.-kompl. Polpaare der Bessel-Filter der Ordnung n

7.B.5 Cauer-Filter (elliptische Filter)

Beim **Cauer-Filter** (Tschebyscheff-Cauer, elliptische Filter, oder auch CC - Filter genannt) lassen sich die Übertragungsfunktionen nicht mehr einfach tabellieren. Die **Ordnung** lässt sich jedoch mittels dem MATLAB-Befehl ellipord einfach bestimmen und die UTF kann mit ellipap eruiert werden. Ebenfalls können die UTFs anhand der **Pol-** und **Nullstellenangaben** in den *LC*-Filtertabellen (Anhang 7.C) bestimmt werden.

<u>Aufgabe 7.12:</u> Bestimmen Sie die Filterordnung für ein Cauer-TP-Filter mit $A_{\min} = 50$ dB, $A_{\max} = 1$ dB und $\Omega_S / \Omega_D = 3$.

Aufgabe 7.13:

Berechnen Sie mit MATLAB die Lage der Pole und Nullstellen für die normierte Cauer-Tiefpassapproximation für $A_{\min} = 77.05 \text{ dB}$, $A_{\max} = 0.09883 \text{ dB}$ und $\Omega_S/\Omega_D = 14.336$ und vergleichen Sie Ihre Werte mit den Tabellenwerten in Tab. 7.34.

7.C Tabellen zum Entwurf von *LC*-Filtern

7.C.1 Tabellen für Allpolfilter

LC-Filter

Abbildung 7.113: Mögliche Anordnungen der *LC*-Filter. Diese Anordnungen gelten nur für Allpolfilter, also Bessel-, Butterworth-, kritisch-gedämpfte und Tschebyscheff-I-Filter und nicht für inverse Tschebyscheff-Filter (Tschebyscheff-II) und Cauer-Filter (elliptische Filter). (Werte gemäss den Tabellen 7.29 bis 7.33).

Bemerkung:

In den folgenden Tabellen sind jeweils Widerstandswerte $R_1 = \alpha \cdot R_2$ aufgezeigt, wobei auf $R_2 = 1$ normiert wurde. Die Werte für α sind bei den verschiedenen Tiefpassapproximationsarten nicht gleich. Bei kritisch-gedämpften *RLC*-Tiefpassfiltern kann α alle positiven, reellen Werte (negative Widerstände machen keinen Sinn bei passiven Schaltungen) annehmen, bei Butterworth *RLC*-Tiefpassfiltern sind jeweils Werte für α kleiner (oder grösser) als 1 nicht möglich (abhängig ob die Filter gerade oder ungerade Ordnung haben), da ansonsten komplexe Werte für die *L* und *C* auftreten würden. Bei Bessel- und Tschebyscheff-Tiefpassfiltern liegen die Grenzen für α zum Teil an anderen Stellen.

\boldsymbol{n}	R_1	C_1	L_2	C_3	L_4	C_5		C_7	L_8	C_9
2	∞	1.4142	0.7071							
	10.0000	0.0743	14.8138							
	5.0000	0.1557	7.7067							
	3.3333	0.2447	5.3126							
	2.5000	0.3419	4.0951							
	2.0000	0.4485	2 8284							
	1.4286	0.6971	2.4387							
	1.2500	0.8485	2.1213							
	1.1111	1.0353	1.8352							
	1.0000	1.4142	1.4142							
3	∞	1.5000	1.3333	0.5000						
	0.1000	5.1672	0.1377	15.4554						
	0.2000	2.6687	0.2842	7.9102						
	0.3000	1.8380	0.4396	5.3634						
	0.4000	1.4254	0.0042	3 2612						
	0.6000	1.0225	0.9650	2.7024						
	0.7000	0.9152	1.1652	2.2774						
	0.8000	0.8442	1.3840	1.9259						
	0.9000	0.8082	1.6332	1.5994						
	1.0000	1.0000	2.0000	1.0000						
4	10,0000	1.5307	1.5772	1.0824	0.3827					
	5 0000	0.0392	5 6835	0.1010	10.0421					
	3.3333	0.0804 0.1237	3.8826	0.5072	5.3381					
	2.5000	0.1692	2.9858	0.6911	4.0094					
	2.0000	0.2175	2.4524	0.8826	3.1868					
	1.6667	0.2690	2.1029	1.0824	2.6131					
	1.4286	0.3251	1.8618	1.2913	2.1752					
	1.2500	0.3882	1.6946	1.5110	1.8109					
	1.1111	0.4657	1.5924	1.7439	1.4690					
ĸ	1.0000	0.7054	1.8478	1.8478	0.7054	0 2000				
0	0,1000	3.1522	0.0912	14.0945	0.3344 0.1727	15.7103				
	0.2000	1.6077	0.1861	7.1849	0.3518	7.9345				
	0.3000	1.0937	0.2848	4.8835	0.5367	5.3073				
	0.4000	0.8378	0.3877	3.7357	0.7274	3.9648				
	0.5000	0.6857	0.4955	3.0510	0.9237	3.1331				
	0.6000	0.5860	0.6094	2.5998	1.1255	2.5524				
	0.7000	0.5173	0.7313	2.2849	1.3326	2.1083				
	0.8000	0.4098	1.0265	1 9095	1.7562	1.7380				
	1.0000	0.6180	1.6180	2.0000	1.6180	0.6180				
6	∞	1.5529	1.7593	1.5529	1.2016	0.7579	0.2588			
	10.0000	0.0263	7.7053	0.1222	15.7855	0.1788	15.7375			
	5.0000	0.0535	3.9170	0.2484	8.0201	0.3628	7.9216			
	3.3333	0.0816	2.6559 2.0275	0.3788	5.4325	0.5517	5.2804			
	2.5000	0.1108	2.0275	0.5159	4.1408	0.7450	3.9303			
	1.6667	0.1732	1.4071	0.8011	2.8580	1.1431	2.5092			
	1.4286	0.2072	1.2363	0.9567	2.4991	1.3464	2.0618			
	1.2500	0.2445	1.1163	1.1257	2.2389	1.5498	1.6881			
	1.1111	0.2890	1.0403	1.3217	2.0539	1.7443	1.3347			
-	1.0000	0.5176	1.4142	1.9319	1.9319	1.4142	0.5176	0.0005		
4	0 1000	1.5576 2.2571	1.7988	1.6588	1.3972	1.0550	0.6560	0.2225 15.7480		
	0.2000	1 1448	0.1350	5 4267	0.2874	8 5263	0.3692	7 9079		
	0.3000	0.7745	0.2055	3.6706	0.4373	5.7612	0.5600	5.2583		
	0.4000	0.5899	0.2782	2.7950	0.5917	4.3799	0.7542	3.9037		
	0.5000	0.4799	0.3536	2.2726	0.7512	3.5532	0.9513	3.0640		
	0.6000	0.4075	0.4322	1.9284	0.9170	3.0050	1.1503	2.4771		
	0.7000	0.3571	0.5154	1.6883	1.0910	2.6177	1.3498	2.0277		
	0.9000	0.3213 0.2985	0.7111	1.4043	1.4891	2.1249	1.7268	1.2961		
	1.0000	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450		
8	∞	1.5607	1.8246	1.7287	1.5283	1.2588	0.9371	0.5776	0.1951	
	10.0000	0.0198	5.8479	0.0949	12.7455	0.1547	17.4999	0.1846	15.7510	
	5.0000	0.0400	2.9608	0.1921	6.4523	0.3133	8.8538	0.3732	7.8952	
	3.3333	0.0608	1.9995	0.2919	4.3563	0.4757	5.9714	0.5650	5.2400	
	2.5000	0.0822	1.5201	0.3945	5.3106 2.6863	0.0424	4.0308	0.7594	5.8825 3.0408	
	1.6667	0.1272	1.0455	0.6102	2.0803 2.2740	0.9912	3.0945	1.1530	2.4524	
	1.4286	0.1513	0.9138	0.7257	1.9852	1.1760	2.6879	1.3490	2.0017	
	1.2500	0.1774	0.8199	0.8499	1.7779	1.3721	2.3874	1.5393	1.6246	
	1.1111	0.2075	0.7575	0.9925	1.6362	1.5900	2.1612	1.7092	1.2671	
	1.0000	0.3902	1.1111	1.6629	1.9616	1.9616	1.6629	1.1111	0.3902	0.1502
9	0 1000	1.5628	1.8424	1.7772	1.6202	1.4037	1.1408	0.8414	0.5155	0.1736 15 7504
	0.2000	0.8878	0.1054	4.3014	0.2333	7.1750	0.3312	9.0766	0.1802 0.3757	7.8838
	0.3000	0.5987	0.1600	2.9006	0.3539	4.8373	0.5022	6.1128	0.5680	5.2249
	0.4000	0.4545	0.2159	2.2019	0.4775	3.6706	0.6771	4.6310	0.7624	3.8654
	0.5000	0.3685	0.2735	1.7846	0.6046	2.9734	0.8565	3.7426	0.9579	3.0223
	0.6000	0.3117	0.3330	1.5092	0.7361	2.5124	1.0410	3.1516	1.1533	2.4328
	0.7000	0.2719	0.3954	1.3162	0.8734	2.1885	1.2323	2.7314	1.3464	1.9812
	0.8000	0.2434 0.2242	0.4023 0.5388	1.0835	1.1859	1.9942	1.4330 1.6538	2.4189 2.1796	1.6930	1.2446
	1.0000	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473
20	$1/(B_1)$	L	Ca	La	C.	Le	Ca		Ca	La

Tabelle 7.29: Normierte Elementwerte für Butterworth-TP-Filter (frequenz
normiert auf die 3.01 d B-Grenzfrequenz bei $\Omega=1)$

Aufgabe 7.14:

Bestimmen Sie für n = 2 und $R_1 = 2 \cdot R_2$ die Elementwerte C_1 und L_2 . Gehen Sie dabei analog wie Beispiel 7.21 vor.

n	R_1	C_1	L_2	C_3	L_4	C_5	L_6	C_7	L_8
2	∞	1.3617	0.4539						
	10.0000	0.0469	14.5097						
	5.0000	0.0965	7.6876						
	3.3333	0.1486	5.4050						
	2.5000	0.2032	4.2577						
	1 6667	0.3191	3 0993						
	1.4286	0.3801	2.7638						
	1.2500	0.4433	2.5096						
	1.1111	0.5084	2.3097						
	1.0000	0.5755	2.1478						
3	∞	1.4631	0.8427	0.2926					
	0.1000	2.9825	0.0860	15.4697					
	0.2000	1.5176	0.1752	8.1403					
	0.3000	1.0283	0.2073	0.0888 4.4573					
	0.5000	0.6353	0.4587	3.7144					
	0.6000	0.5365	0.5576	3.2159					
	0.7000	0.4657	0.6584	2.8575					
	0.8000	0.4124	0.7609	2.5867					
	0.9000	0.3708	0.8650	2.3745					
	1.0000	0.3374	0.9705	2.2034					
4	10,0000	1.5012	0.9781	0.6127	0.2114				
	5,0000	0.0214	0.2086	0.0993	10.8372				
	3,3333	0.0434	2 1174	0.2013	5 8048				
	2.5000	0.0887	1.6040	0.4120	4.5430				
	2.0000	0.1120	1.2952	0.5202	3.7824				
	1.6667	0.1356	1.0886	0.6299	3.2727				
	1.4286	0.1596	0.9406	0.7410	2.9066				
	1.2500	0.1839	0.8292	0.8534	2.6304				
	1.1111	0.2085	0.7423	0.9670	2.4143				
-	1.0000	0.2334	0.6725	1.0815	2.2404	0.1610			
ъ	∞ 0.1000	1.5125	1.0232	0.7531	0.4729	0.1618			
	0.1000	0.8251	0.0478	3 8352	0.1030	8 3747			
	0.3000	0.5548	0.1457	2.5768	0.3174	5.8433			
	0.4000	0.4194	0.1958	1.9464	0.4270	4.5731			
	0.5000	0.3380	0.2465	1.5672	0.5382	3.8077			
	0.6000	0.2836	0.2977	1.3138	0.6506	3.2952			
	0.7000	0.2447	0.3494	1.1323	0.7642	2.9272			
	0.8000	0.2154	0.4016	0.9959	0.8789	2.6497			
	0.9000	0.1926 0.1742	0.4542	0.8894	0.9945	2.4328			
6	1.0000	1 5124	1.0329	0.8125	0.6072	0.3785	0.1287		
Ŭ	10.0000	0.0130	3.8146	0.0612	8.1860	0.1045	15.9506		
	5.0000	0.0261	1.9209	0.1232	4.1204	0.2110	8.3775		
	3.3333	0.0395	1.2890	0.1859	2.7633	0.3193	5.8467		
	2.5000	0.0530	0.9725	0.2492	2.0837	0.4292	4.5770		
	2.0000	0.0666	0.7824	0.3131	1.6752	0.5405	3.8122		
	1.6667	0.0804	0.6553	0.3775	1.4022	0.6530	3.3001		
	1.4280 1.2500	0.0943	0.3044	0.4424	1.2009	0.7003	2.9525		
	1 1111	0.1032	0.4301	0.5732	0.9456	0.9964	2.0334		
	1.0000	0.1365	0.4002	0.6392	0.8538	1.1126	2.2645		
7	∞	1.5087	1.0293	0.8345	0.6752	0.5031	0.3113	0.1054	l
	0.1000	1.0612	0.0313	5.0616	0.0679	8.3967	0.1040	15.9166	
	0.2000	0.5338	0.0630	2.5448	0.1365	4.2214	0.2100	8.3623	
	0.3000	0.3579	0.0951	1.7051	0.2058	2.8280	0.3177	5.8380	
	0.4000	0.2098	0.1274	1.2047	0.2755	2.1304	0.4209	3 8000	
	0,6000	0.1815	0.1927	0.8634	0.4163	1.4312	0.6491	3.2984	
	0.7000	0.1562	0.2257	0.7428	0.4873	1.2308	0.7618	2.9319	
	0.8000	0.1372	0.2589	0.6521	0.5586	1.0803	0.8754	2.6556	
	0.9000	0.1224	0.2923	0.5815	0.6302	0.9630	0.9899	2.4396	
	1.0000	0.1106	0.3259	0.5249	0.7020	0.8690	1.1052	2.2659	
8	10,0000	1.5044	1.0214	0.8392	0.7081	0.5743	0.4253	0.2616	0.0883
	5,0000	0.0089	2.0307	0.0427	5.7710 2.9091	0.0711	8.4376	0.1032	10.8768
	3,3333	0.0179	0.8852	0.0859	1 9396	0.1429	4.2369	0.2085	5 8971
	2,5000	0.0360	0.6667	0.1732	1.4599	0.2878	2.1367	0.4233	4.5645
	2.0000	0.0452	0.5354	0.2173	1.1718	0.3608	1.7154	0.5329	3.8041
	1.6667	0.0545	0.4477	0.2616	0.9794	0.4342	1.4340	0.6435	3.2949
	1.4286	0.0637	0.3850	0.3061	0.8418	0.5078	1.2328	0.7552	2.9295
	1.2500	0.0731	0.3380	0.3509	0.7385	0.5817	1.0816	0.8678	2.6541
	1.1111	0.0825	0.3013	0.3958	0.6580	0.6559	0.9639	0.9813	2.4388
	1.0000	0.0919	0.2719	0.4409	0.5936	0.7303	0.8695	1.0956	2.2656
~	$1/(\mathbf{P}_{1})$	I.	C-	T -	<u>C.</u>	T -	<u>C</u> -	T	<u>C</u> -

Tabelle 7.30: Normierte Elementwerte für Bessel-TP-Filter (frequenz
normiert auf die 3.01 d B-Grenzfrequenz bei $\Omega = 1)$

Aufgabe 7.15:

Bestimmen Sie für n = 2 und $R_1 = 10 \cdot R_2$ die UTF von $U_{R_2}(S)/U_0(S)$. Wie gross ist $U_{R_2}(S)/U_0(S)$ bei S = j0 ausgedrückt durch R_1 und R_2 ? Bestimmen Sie für n = 2 und $R_1 = 10 \cdot R_2$ die UTF von $I_{R_2}(S)/I_0(S)$. Wie gross ist $I_{R_2}(S)/I_0(S)$ bei S = j0 ausgedrückt durch R_1 und R_2 ?

\boldsymbol{n}	R_1	C_1	L_2	C_3	L_4
2	∞	1.2872	0.3218		
	100.0000	1.2968	0.3226		
	10.0000	1.3830	0.3295		
	5.0000	1.4773	0.3365		
	3.3333	1.5705	0.3429		
	2.5000	1.0025	0.3488		
	2.0000	1.7550	0.3594		
	1 4286	1 9333	0.3642		
	1.2500	2.0219	0.3687		
	1.1111	2.1100	0.3730		
	1.0000	2.1974	0.3770		
	0.5000	3.0455	0.4080		
	0.3333	3.8616	0.4291		
	0.2500	4.6571	0.4447		
	0.2000	5.4380	0.4570		
	0.1007	6.2080	0.4071		
	0.1250	7 7231	0.4733 0.4827		
	0.1111	8.4712	0.4890		
	0.1000	9.2141	0.4945		
	0.0100	71.4711	0.5853		
3	∞	1.3595	0.5736	0.1699	
	100.0000	1.3689	0.5746	0.1702	
	10.0000	1.4521	0.5838	0.1720	
	5.0000	1.5430	0.5931	0.1738	
	3.3333	1.0324	0.6016	0.1754 0.1760	
	2.0000	1.7200	0.6094 0.6167	0.1709	
	1.6667	1.8935	0.6234	0.1796	
	1.4286	1.9787	0.6293	0.1809	
	1.2500	2.0626	0.6356	0.1819	
	1.1111	2.1453	0.6421	0.1828	
	1.0000	2.2285	0.6464	0.1840	
	0.5000	3.0235	0.6867	0.1915	
	0.3333	3.7798	0.7139 0.7340	0.1964 0.2001	
	0.2300	5 2247	0.7340	0.2001	
	0.1667	5.9246	0.7627	0.2053	
	0.1429	6.6136	0.7736	0.2072	
	0.1250	7.2938	0.7828	0.2089	
	0.1111	7.9664	0.7909	0.2103	
	0.1000	8.6325	0.7980	0.2116	
4	0.0100	02.4270	0.9182	0.2335	0.1097
-4	100.0000	1.3919	0.6808	0.3483	0.1087
	10.0000	1.4827	0.6904	0.3512	0.1095
	5.0000	1.5718	0.7001	0.3540	0.1103
	3.3333	1.6593	0.7089	0.3566	0.1109
	2.5000	1.7454	0.7171	0.3590	0.1115
	2.0000	1.8303	0.7247	0.3612	0.1120
	1.6667	1.9140	0.7318	0.3633	0.1126
	1.4280	1.9969	0.7382	0.3651	0.1131
	1.1111	2.1595	0.7502	0.3686	0.1139
	1.0000	2.2397	0.7557	0.3701	0.1143
	0.5000	3.0222	0.7898	0.3832	0.1174
	0.3333	3.7412	0.8244	0.3903	0.1190
	0.2500	4.4360	0.8465	0.3954	0.1206
	0.2000	5.1171	0.8628	0.3998	0.1217
	0.1667	5.7827	0.8763	0.4035	0.1226
	0.1429	0.4380	0.8874	0.4005	0.1233
	0.1230	7.6820	0.9094	0.4112	0.1240 0.1246
	0.1000	8.3488	0.9127	0.4133	0.1250
	0.0100	24.8161	1.3350	0.5982	0.1682
n	$1/(B_1)$	La	Ca	La	C.

Tabelle 7.31: Normierte Elementwerte für kritisch-gedämpfte Filter (Gauss-Filter) (frequenznormiert auf $|H(j)| = 1/\sqrt{2}$ (3.01 dB-Grenzfrequenz bei $\Omega = 1$)

Aufgabe 7.16:

Skizzieren Sie das entnormierte, kritisch-gedämpfte *LC*-Tiefpassfilter 4. Ordnung mit $R_1 = 1 \text{ k}\Omega$, $R_2 = 4 \text{ k}\Omega$, maximaler Druchlassbereichsdämpfung von $A_{\text{max}} = 0.5 \text{ dB}$ und Druchlassbereichsgrenzfrequenz von $f_D = 3 \text{ kHz}$, wobei das erste Filterelement nach der Quelle die Parallelkapazität C_1 sein soll. Zeichnen Sie den Amplitudengang von Quelle zu Last R_2 auf, indem Sie die UTF der gesamten Schaltung bestimmen.

\boldsymbol{n}	R_1	C_1	L_2	C_3	L_4	C_5		C7	L_8
2	~	1 3911	0.8191						
~	10,0000	0.0868	14 4222						
	10.0000	0.0808	7.4050						
	5.0000	0.1841	7.4230						
	3.3333	0.2933	5.0502						
	2.5000	0.4169	3.8265						
	2.0000	0.5597	3.0538						
	1.6667	0.7326	2.4885						
	1 4286	0.9771	1 9824						
	1 3554	1 2087	1.6382						
	1.0004	1.2087	1.0002	0.7164					
3	∞	1.5133	1.5090	0.7164					
	0.1000	7.5121	0.1549	15.4656					
	0.2000	3.9418	0.3172	7.8503					
	0.3000	2.7630	0.4860	5.2788					
	0.4000	2.1857	0.6603	3.9675					
	0.5000	1.8530	0.8383	3 1595					
	0.6000	1.6475	1.0174	2,6026					
	0.0000	1.0475	1.0174	2.0020					
	0.7000	1.5210	1.1927	2.1901					
	0.8000	1.4511	1.3557	1.8711					
	0.9000	1.4258	1.4935	1.6219					
	1.0000	1.4328	1.5937	1.4328					
4	∞	1.5107	1.7682	1.4550	0.6725				
	10,0000	0.0704	14 8873	0 1802	15 2297				
	5 0000	0.0704	7 6070	0.1602	7 6149				
	5.0000	0.1475	1.6072	0.3670	(.0142				
	3.3333	0.2329	5.1777	0.5602	5.0301				
	2.5000	0.3288	3.9606	0.7599	3.6977				
	2.0000	0.4398	3.2268	0.9672	2.8563				
	1.6667	0.5764	2.7304	1.1851	2.2425				
	1 4286	0 7789	2 3480	1 4292	1 7001				
	1.3554	0.0024	2.0400	1.5845	1 3451				
2	1.0004	0.3324	2.1470	1.5645	1.3451	0.0505			
Б	∞	1.5613	1.8049	1.7659	1.4173	0.6507			
	0.1000	6.7870	0.1447	17.9569	0.1820	15.7447			
	0.2000	3.5457	0.2950	9.1272	0.3659	7.8890			
	0.3000	2.4765	0.4509	6.1861	0.5503	5.2373			
	0.4000	1.9538	0.6119	4.7193	0.7333	3.8861			
	0.5000	1.6535	0.7777	3.8446	0.9126	3.0548			
	0.6000	1 4604	0.0460	2 2699	1 0846	2 4925			
	0.0000	1.4094	1 1170	3.2088	1.0640	2.4633			
	0.7000	1.3380	1.1170	2.8079	1.2437	2.0021			
	0.8000	1.2998	1.2824	2.5819	1.3815	1.7384			
	0.9000	1.2845	1.4329	2.3794	1.4878	1.4883			
	1.0000	1.3013	1.5559	2.2411	1.5559	1.3013			
6	∞	1.5339	1.8838	1.8306	1.7485	1.3937	0.6383		
	10.0000	0.0666	14.2200	0.1777	18.4267	0.1901	15.3495		
	5 0000	0.1303	7 2500	0.3613	0.2605	0.3835	7 6184		
	2,2222	0.1335	1.2000	0.5015	6 1047	0.5555	4.0069		
	3.3333	0.2195	4.9200	0.5514	0.1947	0.5795	4.9902		
	2.5000	0.3095	3.7652	0.7492	4.6513	0.7781	3.6453		
	2.0000	0.4137	3.0679	0.9575	3.7118	0.9794	2.7936		
	1.6667	0.5422	2.6003	1.1830	3.0641	1.1850	2.1739		
	1.4286	0.7347	2.2492	1.4537	2.5437	1.4051	1.6293		
	1.3554	0.9419	2.0797	1.6581	2.2473	1.5344	1.2767		
7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 5748	1 8577	1 9210	1 8270	1 7340	1 3786	0.6307	
	0 1000	6 5605	0.1405	17 6031	0.1838	19 3760	0.1862	15 8197	
	0.1000	2 4070	0.1400	\$ 0271	0.1000	0.7607	0.1002	7 2001	
	0.2000	3.4278	0.2802	8.9371	0.3092	9.7097	0.3723	7.8901	
	0.3000	2.3917	0.4369	6.0535	0.5557	6.5685	0.5569	5.2167	
	0.4000	1.8853	0.5926	4.6179	0.7423	4.9702	0.7384	3.8552	
	0.5000	1.5948	0.7529	3.7642	0.9276	4.0150	0.9142	3.0182	
	0.6000	1.4170	0.9169	3.2052	1.1092	3.3841	1.0807	2.4437	
	0.7000	1.3100	1.0826	2.8192	1.2833	2.9422	1.2326	2.0207	
	0.8000	1 2550	1 2440	2 5481	1 4430	2 6242	1 3619	1 6967	
	0.0000	1 2499	1 2046	2.0401	1 5794	2.0242	1 4509	1 4479	
	1.0000	1.2422	1.5340	2.3013	1.0704	2.3900	1.4000	1.4472	
	1.0000	1.2015	1.5196	2.2392	1.0804	2.2392	1.5196	1.2015	
8	∞	1.5422	1.9106	1.9008	1.9252	1.8200	1.7231	1.3683	0.6258
	10.0000	0.0652	13.9469	0.1749	18.3007	0.1942	19.0437	0.1922	15.3880
	5.0000	0.1364	7.1050	0.3554	9.1917	0.3917	9.5260	0.3863	7.6164
	3,3333	0.2147	4.8250	0.5421	6.1483	0.5930	6.3423	0.5820	4.9811
	2 5000	0.3025	3 6860	0 7364	4 6191	0.7990	4 7388	0 7787	3 6241
	2.0000	0.4049	3,0000	0.0415	3 6017	1 0119	3 7610	0.0767	2 7600
	2.0000	0.4042	3.0029	0.9410	3.0917	1.0110	3.7019	1.1700	2.7090
	1.0007	0.5298	2.5460	1.1643	3.0568	1.2367	3.0869	1.1769	2.1477
	1.4286	0.7186	2.2054	1.4350	2.5554	1.4974	2.5422	1.3882	1.6029
	1.3554	0.9234	2.0454	1.6453	2.2826	1.6841	2.2300	1.5092	1.2515
n	$1/(R_{1})$	La	C_{2}	La	C_{A}	I.r	C_{α}	I	C_{\circ}
	/ (/	- ² 1	<u> </u>		04		~ vo		~ 8

Tabelle 7.32: Normierte Elementwerte für Tschebyscheff-I-TP-Filter mit $A_{\max} = 0.1$ dB (frequenz-normiert auf die 3.01 dB-Grenzfrequenz bei $\Omega = 1$)

n	R_1	C_1	L_2	C_3	L_4	C_5		C7	L8	C_9	L_{10}
2	∞	1.3067	0.9748								
	10.0000	0.1052	13.3222								
	5.0000	0.2282	6.6994								
	3.3333	0.3754	4.4110								
	2.5000	0.5635	3.1648								
	2.0000	0.9086	2.1029								
	1.9841	0.9827	1.9497	0.0210							
3	0 1000	1.5720	1.5179	0.9318							
	0.1000	5 2542	0.1554	8 2251							
	0.2000	3 7202	0.3087	5 5762							
	0.4000	2.9854	0.6146	4.2416							
	0.5000	2.5571	0.7592	3,4360							
	0.6000	2.2889	0.8937	2.8984							
	0.7000	2.1135	1.0149	2.5172							
	0.8000	1.9965	1.1203	2.2368							
	0.9000	1.9175	1.2086	2.0255							
	1.0000	1.8636	1.2804	1.8636							
4	∞	1.4361	1.8888	1.5211	0.9129						
	10.0000	0.0975	15.3521	0.1940	14.2616						
	5.0000	0.2100	7.7076 5.1106	0.3996	0.9874						
	3.3333	0.5440	2 7660	0.0208	2 1206						
	2.0000	0.8452	2.7197	1 2383	1 9848						
	1.9841	0.9202	2.5864	1.3036	1.8258						
5	∞	1.6299	1.7400	1.9217	1.5138	0.9034					
	0.1000	9.5560	0.1525	19.6465	0.1731	16.5474					
	0.2000	5.0639	0.3060	10.0537	0.3430	8.3674					
	0.3000	3.5877	0.4590	6.8714	0.5075	5.6245					
	0.4000	2.8692	0.6091	5.2960	0.6640	4.2447					
	0.5000	2.4571	0.7537	4.3672	0.8098	3.4137					
	0.6000	2.2006	0.8901	3.7651	0.9420	2.8609					
	0.7000	2.0347	1.0150	3.3525	1.0582	2.4704					
	0.8000	1.9237	1.1201	2 8478	1.1309	1 9701					
	1 0000	1.8069	1.3025	2.6914	1.3025	1.8069					
6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.4618	1.9799	1.7803	1.9253	1.5077	0.8981				
-	10.0000	0.0958	15.1862	0.1974	17.6807	0.2017	14.4328				
	5.0000	0.2059	7.6144	0.4064	8.7318	0.4121	7.0310				
	3.3333	0.3370	5.0553	0.6323	5.6993	0.6348	4.4809				
	2.5000	0.5056	3.7219	0.8900	4.1092	0.8808	3.1025				
	2.0000	0.8304	2.7041	1.2913	2.8720	1.2372	1.9556				
	1.9841	0.9053	2.5774	1.3676	2.7133	1.2991	1.7962				
7	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1.6464	1.7772	2.0306	1.7892	1.9239	1.5034	0.8948			
	0.1000	9.4555	0.1513	19.6486	0.1778	20.6314	0.1701	10.0000			
	0.2000	3 5456	0.3034	6 8674	0.5524	7 1341	0.5478	5 6350			
	0.4000	2 8348	0.6035	5 2947	0.6846	5 4698	0.6690	4 2428			
	0.5000	2.4275	0.7470	4.3695	0.8377	4.4886	0.8137	3.4050			
	0.6000	2.1744	0.8824	3.7717	0.9786	3.8524	0.9441	2.8481			
	0.7000	2.0112	1.0070	3.3638	1.1050	3.4163	1.0582	2.4554			
	0.8000	1.9045	1.1182	3.0761	1.2149	3.1071	1.1546	2.1681			
	0.9000	1.8348	1.2146	2.8691	1.3080	2.8829	1.2335	1.9531			
	1.0000	1.7896	1.2961	2.7177	1.3848	2.7177	1.2961	1.7896			
8	10,0000	1.4710	2.0022	1.8248	2.0440	1.7911	1.9218	1.5003	0.8926		
	5 0000	0.0951	7 5689	0.1909	8 7770	0.2081	8 8830	0.2035	7 0452		
	3,3333	0.3344	5.0234	0.6304	5.7322	0.6577	5,7760	0.6370	4,4806		
	2.5000	0.5017	3.6988	0.8878	4.1404	0.9184	4.1470	0.8814	3.0954		
	2.0000	0.8249	2.6915	1.2919	2.9133	1.3160	2.8799	1.2331	1.9448		
	1.9841	0.8998	2.5670	1.3697	2.7585	1.3903	2.7175	1.2938	1.7852		
9	∞	1.6533	1.7890	2.0570	1.8383	2.0481	1.7910	1.9199	1.4981	0.8911	
	0.1000	9.4131	0.1507	19.5995	0.1779	20.8006	0.1822	20.8588	0.1770	16.7140	
	0.2000	4.9830	0.3021	10.0212	0.3526	10.5818	0.3600	10.5925	0.3491	8.4189	
	0.3000	3.5279	0.4528	6.8474	0.5223	7.1951	0.5318	7.1876	0.5142	5.6390	
	0.4000	2.8203	0.6008	0.2792	0.6850	0.5207	0.6957	5.5023	0.6700	4.2410	
	0.5000	2.4130	0.7430	3 7621	0.8385	3 8985	0.8493	3 8647	0.9436	2 8426	
	0.7000	2.0013	1.0028	3.3565	1.1075	3.4635	1.1157	3.4232	1.0568	2.4489	
	0.8000	1.8955	1.1139	3.0709	1.2189	3.1565	1.2246	3.1102	1.1523	2.1611	
	0.9000	1.8267	1.2103	2.8658	1.3135	2.9353	1.3165	2.8834	1.2302	1.9458	
	1.0000	1.7822	1.2921	2.7162	1.3922	2.7734	1.3922	2.7162	1.2921	1.7822	
10	∞	1.4753	2.0107	1.8386	2.0733	1.8432	2.0494	1.7904	1.9183	1.4965	0.8900
	10.0000	0.0948	15.0578	0.1965	17.7624	0.2086	18.2313	0.2107	18.1645	0.2041	14.5199
	5.0000	0.2037	7.5446	0.4042	8.7694	0.4266	8.9726	0.4300	8.9248	0.4154	7.0518
	3.3333	0.3332	5.0070	0.6289	5.7273	0.6594	5.8398	0.6631	5.7947	0.6376	4.4803
	2.0000	0.4999	3.0809 2.6845	0.8897	4.1383	0.9210	4.2020	0.9238	4.1040	1 2206	3.0919
	1.9841	0.8972	2.5610	1.3683	2.7632	1.4009	2.7795	1.3927	2.7148	1.2908	1.7801
~	$1/(P_{.})$	T.	C-	I.5000		T	<u> </u>	T _	<u> </u>	T -	<u>C</u>
71	1 1/(11)	L L 1	L U2	L L 3	U4	L 5	U6	L7	U8	L9	U10

Tabelle 7.33: Normierte Elementwerte für Tschebyscheff-I-TP-Filter mit $A_{\text{max}} = 0.5 \text{ dB}$ (frequenz-normiert auf die 3.01 dB-Grenzfrequenz bei $\Omega = 1$)

7.C.2 Tabellen für Cauer-Filter

Anordnungen für Filter der 3. Ordnung

In der Pol- & Nullstellendarstellung für Cauer-Filter der 3. Ordnung sind **beide Null**stellen immer auf der $j\Omega$ -Achse (bei $\pm j\Omega_2$) und die Pole sind immer in der linken *S*-Halbebene. Ein Pol ist auf der negativen σ' -Achse und ein Polpaar ist konjugiertkomplex. Die normierte UTF ist somit¹¹: $H(S) = K \cdot \frac{(S-j\Omega_2)(S+j\Omega_2)}{(S+\sigma_0)(S+\sigma_1+j\Omega_1)(S+\sigma_1-j\Omega_1)}$. Die folgenden beiden Abbildungen sind gültig für die Tabellen 7.34 bis 7.35.

Abbildung 7.114: Links: Pol- & Nullstellenverteilung; Rechts: Amplitudengang. Es gilt immer: $\Omega_2 > \Omega_S > \Omega_D$.

Abbildung 7.115: Links: Minimal-C Filter; Rechts: Minimal-L Filter. Diese beiden Anordnungen gelten für die Tabellen 7.34 bis 7.35.

 $^{^{11}}K$ ist nicht in den Tabellen 7.34 bis 7.35 angegeben. Wie leicht einzusehen ist, gilt: $K=\frac{\sigma_0\cdot(\sigma_1^2+\Omega_1^2)}{\Omega_2^2}.$

		C_3	1.0878	1.0875	1.0865	1.0858	1.0849	1.0838	1.0826	1 0707	1.0780	1.0761	1.0742	1.0720	1.0698	1.00/4	1.0622	1.0594	1.0565	1.0535	1.0505	1.0473	1.0440	1.0407	1.0373	1.0339	1.0269	1.0234	1.0199	1.0165	1.0130	1.0064	1.0032	1.0001	0.9972	0.9945	0.9920	0.9898	0.98/9	0.9850	0.9842	0.9839	0.9841	0.9849	0.9864	• • • • •	L3
	8	L_2	1.0843	1.0834 1.0819	1.0798	1.0771	1.0738	1.0699	1.0654	1.0546	1.0483	1.0414	1.0339	1.0258	1.0171	0.0070	0.9875	0.9764	0.9648	0.9526	0.9398	0.9264	0.9124	0.8979	0.8829	0.8672	0.8343	0.8171	0.7993	0.7810	0.7623	0.7233	0.7031	0.6825	0.6615	0.6401	0.6184	0.5964	0.5740	0.5286	0.5057	0.4826	0.4595	0.4364	0.4133	0.000	C C
	$K^2 =$	C_2	0.0002	0.0008	0.0034	0.0053	0.0076	0.0104	0.0137	0.0215	0.0262	0.0313	0.0369	0.0431	0.0498	0.0650	0.0030	0.0825	0.0923	0.1028	0.1141	0.1261	0.1390	0.1528	0.1675	0.1833	0.2182	0.2375	0.2582	0.2804	0.3043	0.3575	0.3872	0.4194	0.4541	0.4918	0.5327	0.5772	0.6700	0.7372	0.8013	0.8719	0.9501	1.0367	1.1332	CO1-7-1	L2
		C_1	0.5141	0.5136 0.5126	0.5113	0.5096	0.5076	0.5051	0.5023	0.4991	0.4915	0.4872	0.4824	0.4773	0.4717	0.4030	0.4527	0.4455	0.4379	0.4299	0.4215	0.4126	0.4033	0.3935	0.3833	0.3726	0.3497	0.3376	0.3249	0.3117	0.2980	0.2689	0.2535	0.2375	0.2209	0.2036	0.1857	1/91.0	0.1278	0.1070	0.0854	0.0630	0.0398	0.0156	-0.0094	•••••	17
		L_2	1.1468	1.1461 1.1449	1.1433	1.1411	1.1386	1.1355	1.1320	1 1 2 2 5 0	1.1186	1.1132	1.1073	1.1010	1.0941	1.0503	1.0709	1.0623	1.0531	1.0436	1.0335	1.0230	1.0121	1.0006	0.9888	0.9765	0.9505	0.9369	0.9228	0.9083	0.8934	0.8623	0.8461	0.8296	0.8126	0.7953	0.7776	0.7395	0.7994	0.7033	0.6840	0.6643	0.6444	0.6243	0.6039	±000.0	C2
	$K^2 = 1$	C_2	0.0002	0.0008	0.0032	0.0050	0.0072	0.0098	0.0129	0000 0	0.0245	0.0293	0.0345	0.0402	0.0463	0.0601	1000.0	0.0759	0.0846	0.0939	0.1037	0.1142	0.1253	0.1371	0.1496	0.1628	0.1915	0.2071	0.2236	0.2411	0.2596	0.2999	0.3218	0.3450	0.3697	0.3959	0.4237	0.4532	0.4547	0.5541	0.5924	0.6334	0.6774	0.7246	0.7745	10000	L2
		$\begin{array}{c} C_1 \\ C_3 \\ \end{array} =$	1.0285	1.0281 1.0273	1.0262	1.0249	1.0232	1.0212	1.0189	1.0124	1.0104	1.0067	1.0029	0.9988	0.9944	0.9697	0.9794	0.9738	0.9679	0.9617	0.9552	0.9484	0.9413	0.9339	0.9262	0.9182	0.9014	0.8926	0.8834	0.8740	0.8643	0.8544 0.8441	0.8336	0.8229	0.8118	0.8005	0.7890	0.7772	0.7520	0.7404	0.7277	0.7148	0.7017	0.6884	0.6749	CT00.0	$L_{1}^{L_{1}} = L_{3}$
:		Ω_2	66.1616	33.0839 22.0595	16.5483	13.2424	11.0392	9.4661	8.2868	6.6370	6.0377	5.5386	5.1166	4.7552	4.4423	4.1000 2 0077	3.7137	3.5224	3.3505	3.1951	3.0541	2.9256	2.8079	2.6999	2.6003	2.5083	2.3438	2.2701	2.2012	2.1368	2.0765	2.0199	1.9165	1.8692	1.8245	1.7823	1.7423	1.7044	1.0054 1.6242	1.6018	1.5710	1.5415	1.5135	1.4868	1.4613	CO05-1	275
	8 dB	Ω_1	1.20782	1.20789	1.20816	1.20836	1.20861	1.20890	1.20922	1 20000	1.21042	1.21088	1.21137	1.21188	1.21241	1 91250	1.21409	1.21466	1.21523	1.21579	1.21634	1.21687	1.21737	1.21784	1.21828	1.21867	1.21928	1.21948	1.21962	1.21966	1.21962	1.21947	1.21883	1.21833	1.21768	1.21689	1.21594	1.21483	1 91906	1.21040	1.20853	1.20645	1.20416	1.20164	1.19890	CCCCT'T	L75
	0.0988	σ_1	0.48595	0.48560 0.48502	0.48420	0.48316	0.48188	0.48037	0.47863	0014.0	0.47201	0.46934	0.46644	0.46331	0.45995	0.45050	0.44850	0.44422	0.43972	0.43500	0.43005	0.42488	0.41949	0.41387	0.40804	0.40200	0.38928	0.38260	0.37573	0.36866	0.36139	0.34629	0.33847	0.33048	0.32233	0.31402	0.30556	0.29697	0.28824	0.27046	0.26142	0.25231	0.24313	0.23390	0.22464	00017-0	σ1
	$_{\text{lax}} = 0$	σ_0	0.97227	0.97271 0.97343	0.97444	0.97574	0.97734	0.97923	0.98143	0.965950	0.98986	0.99330	0.99706	1.00116	1.00559	1 01551	1.02102	1.02690	1.03317	1.03984	1.04692	1.05443	1.06238	1.07079	1.07967	1.08905	1.10937	1.12036	1.13194	1.14412	1.15695	1.18464	1.19957	1.21528	1.23180	1.24918	1.26745	1.28008	1.30091	1.35059	1.37416	1.39898	1.42511	1.45262	1.48160	71710'T	<i>α</i> 0
	$\equiv \boldsymbol{A}_{\mathrm{n}}$	$egin{array}{c} A_{ m min} \ [m dB] \end{array}$	113.19	95.13 84.56	77.06	71.24	66.48	62.45 70.00	58.96 EE 00	00.00 53 19	50.63	48.34	46.24	44.29	42.47	40.11 20.17	37.66	36.22	34.86	33.56	32.32	31.13	29.99	28.89	27.84	26.82 26.82	24.88	23.96	23.06	22.20	21.35	20.53	18.95	18.20	17.46	16.73	16.03	15.34	14.07	13.38	12.75	12.14	11.54	10.96	10.40	-0.C	[dB]
3; ; ;	15%	Ω_S	57.2987	28.6537 19.1073	14.3356	11.4737	9.5668	8.2055	7.1853	0.3920 5 7588	5.2408	4.8097	4.4454	4.1336	3.8637	0.0200	3.2361	3.0716	2.9238	2.7904	2.6695	2.5593	2.4586	2.3662	2.2812	2.2027	2.0627	2.0000	1.9416	1.8871	1.8361	1.7434	1.7013	1.6616	1.6243	1.5890	1.5557	1.5243	1 4663	1.4396	1.4142	1.3902	1.3673	1.3456	1.3250	±000.1	S15
= u	$= \theta$	heta [Grad]	1	7 5	4	2	9	2	x	ط ۱0	11	12	13	14	15	10	18	19	20	21	22	23	24	25	26	27	29	30	31	32	33	35	36	37	38	39	40	41	42	44	45	46	47	48	49 F0	00	b [Grad]

Tabelle 7.34: Normierte Elementwerte für Cauer-Filter 3. Ordnung für $\rho = 15\% \equiv 0.0988$ dB (frequenznormiert auf die Rippelgrenzfrequenz $\Omega_D = 1$) (Werte gemäss [71])

Tabelle 7.35: Normierte Elementwerte für Cauer-Filter 3. Ordnung für $\rho = 20\% \equiv 0.1773$ dB (frequenznormiert auf die Rippelgrenzfrequenz $\Omega_D = 1$) (Werte gemäss [71])