\section{LTI systems} \subsection{Properties} Let \(\mathcal{S}\) denote a system. \begin{table}[H] \begin{tabularx}{\linewidth}{p{.3\linewidth} X} \toprule \bfseries Property & \bfseries Meaning \\ \midrule static \(\leftrightarrow\)\newline dynamic & Static means that it is memoryless (in the statistical sense), whereas dynamic has memory. Static systems depend only on the input \(u\), dynamic systems on \(du/dt\) or \(\int u\,dt\). \\ causal \(\leftrightarrow\)\newline acausal & Causal systems use only informations from the past, i.e. \(h(t < 0) = 0\). Real systems are always causal. \\ linear \(\leftrightarrow\)\newline nonlinear & The output of a linear system does not have new frequency that were not in the input. For linear system the superposition principle is valid: \(\mathcal{S}(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 \mathcal{S} x_1 + \alpha_2 \mathcal{S} x_2\). \\ time invariant \newline\(\leftrightarrow\) time variant & Time invariant systems do not depend on time, but for ex. only on time differences. \\ \midrule SISO, MIMO & Single input single output, multiple input multiple output. \\ BIBO & Bounded input bounded output, i.e. there are some \(A\), \(B\) such that \(|x| < A\) and \(|y| < B\) for all \(t\), equivalently \(\int_\mathbb{R} |h|\,dt < \infty\).\\ \bottomrule \end{tabularx} \end{table} \subsection{Time domain description} A general LTI system with input \(x\) and output \(y\) is described in the time domain with a linear differential equation of the form \[ \sum_{i=0}^n a_i y^{(i)} = \sum_{k=0}^m b_k x^{(k)}. \] \subsection{Impulse response} %% TODO: Impulse response \subsection{Transfer function} By taking the Laplace transform of the differential equation of the system a and assuming all initial conditions to be zero, we obtain \[ Y \sum_{i=0}^n a_i s^i = X \sum_{k=0}^m b_k s^k, \] where \(Y\) and \(X\) are the Laplace transform of \(y\) and \(x\) respectively. We then define the \emph{transfer function} to be the ratio \(H = Y/X\), or \[ H(s) = \frac{\displaystyle\sum_{k=0}^m b_k s^k}{\displaystyle\sum_{i=0}^n a_i s^i} = \frac{\displaystyle\prod_{k=0}^m s - z_k}{\displaystyle\prod_{i=0}^n s - p_i}, \] since polynomials can be expressed in terms of their roots. We say the roots of \(Y\) are \emph{zeroes} and those of \(X\) \emph{poles}, because of how they appear in the complex plane of \(H\). \subsection{Frequency response} %% TODO: Frequency response \subsection{Stability} %% TODO: Hurwitz Let \(\mathcal{S}\) be a system with impulse response \(h(t)\) and transfer function \(H(s)\). \begin{table}[H] \centering \begin{tabularx}{\linewidth}{lX} \toprule Stable & All poles are on the LHP\footnote{Left half plane, where \(\mathrm{Re}(s) < 0\).}. \\ Marginally stable & There are no poles in the RHP but a simple pole on the \(j\)-axis. \\ Instable & There are poles in the RHP or poles of hider order on the \(j\)-axis. \\ \bottomrule \end{tabularx} \end{table} \subsection{Distortion} For a periodic signal the Fourier transform is a bunch of weighted Dirac deltas (or a Fourier series), i.e. \[ \fourier\{f\} = \sum_i d_i \delta(\omega - \omega_i). \] The spectrum of a sinusoidal signal of frequency \(\omega_1\) is only one weighted delta \(d_1\delta(\omega - \omega_1)\). When a system introduces a \emph{nonlinear} distortion, with a clean sine input new higher harmonics are found in the output. To measure the distortion of a signal in the English literature there is the \emph{total harmonic distortion} (THD) defined as \[ \text{THD} = \frac{1}{d_1}\sqrt{\sum_{i=1}^n d_i^2}. \] In the German literature there is the distortion factor (\emph{Klirrfaktor}, always between 0 and 1) \[ k = \sqrt{\frac{d_2 + d_3 + \cdots + d_n}{d_1 + d_2 + \cdots + d_n}}. \] Both are usually given in percent (\%) and are related with \[ (\text{THD})^2 = \frac{k^2}{1-k^2}, \] thus THD \(\leq k\). \subsection{Stochastic inputs} \iffalse \begin{figure} \begin{tikzpicture}[ system/.style = {draw, thick, inner sep = 4mm, outer sep = 1mm} ] \matrix[row sep=3mm, column sep=1cm] (M) { \node (x) {\(x(t)\)}; & \node (g) {\(g(t) = y_\delta (t)\)}; & \node (y) {\(y(t) = g(t) * x(t)\)}; \\ & \node (h) {\(h(t)\)}; & \node (yw) {\(y_\omega(t) = h(t) * x(t)\)}; \\ \node (in) {Input}; & \node[system, fill=white] (sys) {LTI-System \(\mathcal{S}\)}; & \node (out) {Response}; \\ \node (X) {\(X(s)\)}; & \node (G) {\(G(s) = 1/p(s)\)}; & \node (Y) {\(Y(s) = G(s) \cdot X(s)\)}; \\ \node (Xw) {\(X(\omega)\)}; & \node (H) {\(H(\omega) = G(j\omega)\)}; & \node (Yw) {\(Y_\omega (\omega) = H(\omega) \cdot X(\omega)\)}; \\ }; \draw[thick, ->] (in) to (sys); \draw[thick, ->] (sys) to (out); \begin{pgfonlayer}{background} \coordinate (T1) at ($(x.north west) - (.8,-.1)$); \coordinate (T2) at ($(yw.south east) + (.8,-.1)$); \coordinate (B1) at ($(X.north west) - (0,-.1)$); \coordinate (B2) at ($(Y.south east) + (0,-.1)$); \coordinate (F1) at ($(Xw.north west) - (0,-.1)$); \coordinate (F2) at ($(Yw.south east) + (0,-.1)$); \fill[color=blue!20] (T1) rectangle (T2); \fill[color=magenta!20] (B1 -| T1) rectangle (B2 -| T2); \fill[color=red!20] (F1 -| T1) rectangle (F2 -| T2); % \fill[top color=blue!20, bottom color=magenta!20] % (T1) rectangle (B2); \end{pgfonlayer} \end{tikzpicture} \end{figure} \fi