From 6247dcaa9f30c34a5c135c5fcccf56d91fd8c015 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Thu, 2 Nov 2017 22:07:40 +0100 Subject: Start serial and AD/DA converters chapter and minor corrections --- techwsw/tex/convertitori.tex | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) (limited to 'techwsw/tex/convertitori.tex') diff --git a/techwsw/tex/convertitori.tex b/techwsw/tex/convertitori.tex index e600f0e..742d1f9 100644 --- a/techwsw/tex/convertitori.tex +++ b/techwsw/tex/convertitori.tex @@ -1,6 +1,38 @@ \section{Convertitori {\tt AD - DA}} \subsection{Quantizzazione dei dati} +Il processo di digitalizzazione dei segnali analogici introduce il concetto di +\emph{quantizzazione}. Infatti mentre un segnale analogico pu\`o assumere +infiniti valori in un campo continuo la sua rappresentazione digitale pu\`o +assumere soltanto un numero finito di valori \emph{discreti}. +Gli infiniti valori del segnale analogico devono pertanto essere quantizzati +ovvero raggruppati in un certo numero di fasce delimitate da livelli fissi +detti \emph{livelli di quantizzazione}; a ciascuna fascia di valori analogici +corrisponder\`a un valore digitale. La distanza fra due livelli di +quantizzazione continui costituisce il \emph{passo di quantizzazione} $Q$\footnote{Definito spesso anche come $LSB$}, a +cui corrisponde il valore del bit meno significativo. +$$ Q = \frac{V_{ref}}{2^n} \qquad FS = Q\cdot 2^n = V_{ref}$$ +Un dato digitale ad $n$ bit pu\`o esprimere $2^n$ valori; il valore digitale +$2^n$ viene pertanto associato al valore di fondo scala $FS$ o $FSR$ (Full +scale range) della grandezza analogica. + +\paragraph{Risoluzione.} In un ADC i valori digitali in uscita non riproducono +dunque fedelmente il segnale di ingresso ma ne danno una rappresentazione +approssimata tanto pi\`u precisa quanto minore \`e il passo di quantizzazione +$Q$. Il numero di bit $n$ in uscita di un convertitore AD, cos\`i come il +numero dei bit di ingresso di un convertitore DA viene generalmente chiamato +\emph{risoluzione}\footnote{In alcuni casi viene indicato come il valore del +passo di quantizzazione indipendente da $V_{ref}$, dunque $R = 2^{-n}$}. +$$ R = \log_2{\frac{V_{ref}}{Q}} = n$$ + +\paragraph{Errore di quantizzazione.} Avendo quantizzato il segnale analogico, +ogni valore non campionato sar\`a sostituito dall'ultimo valore misurato +(effetto `scaletta'). Perci\`o nel punto il cui l'errore del segnale digitale +sar\`a massimo rispetto a quello analogico, l'errore sar\`a di esattamente: +$$\varepsilon = \frac{1}{2}Q \qquad \varepsilon_\% = \frac{1}{2^{n+1}}$$ + +% TODO: diagramma segnale analogico lineare -> digitalizzato + \subsection{Sampling and Hold (Circuiti SH)} \subsection{Convertitori digitale $\rightarrow$ analogico ({\tt DA})} -- cgit v1.2.1