

Universal Serial Bus
Test and Measurement Class

Specification (USBTMC)

Revision 1.0

April 14, 2003

USBTMC Specification Revision 1.0

ii April 14, 2003

Revision History
Rev Date Filename Comments

1.0 April 14, 2003 USBTMC_1_00.doc Copyright notice added.
1.0 December 22, 2002 USBTMC_1_00.doc 1.0 specification adopted
0.9 September 17, 2002 USBTMC_0_9rc1.doc Specification moved to 0.9
0.8 April 30, 2002 USBTMC_0_8a.doc Specification moved to 0.8
0.7 June 26, 2001 USBTMC_0_70.doc Specification effort started in DWG

Send comments via electronic mail to the DWG chair (pberg@mcci.com).

© Copyright 2003, USB Implementers Forum, Inc.
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER INCLUDING
ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY
WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS SPECIFICATION FOR
INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED OR INTENDED
HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR
INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO IMPLEMENTATION OF
INFORMATION IN THIS SPECIFICATION. AUTHORS OF THIS SPECIFICATION ALSO DO NOT
WARRANT OR REPRESENT THAT SUCH IMPLEMENTATION(S) WILL NOT INFRINGE SUCH
RIGHTS.

All product names are trademarks, registered trademarks, or servicemarks of their respective owners.

Revision 1.0 USBTMC Specification

April 14, 2003 iii

Contributors
Andy Purcell Agilent Technologies

Kathy Hertzog Agilent Technologies

Steve Schink Agilent Technologies

Jerry Mercola ICS Electronics

Colin White IFR

Makoto Kondo Kikusui

Andrew Thomson National Instruments

Dan Mondrik National Instruments

Eric Singer National Instruments

Geert Knapen Philips

Arnd Diestelhorst Rohde & Schwarz

David Fink Tektronix

Doug Reynolds Tektronix

USBTMC Specification Revision 1.0

iv April 14, 2003

Table of Contents

1 INTRODUCTION ...1

1.1 Purpose ...1

1.2 Scope ...1

1.3 Related Documents ..1

1.4 Terms and Abbreviations..2

2 OVERVIEW..4

3 INTERFACE ENDPOINTS AND CHARACTERISTICS..5

3.1 Default control endpoint ...5

3.2 Bulk-OUT endpoint ...5
3.2.1 Bulk-OUT USBTMC command messages ..7

3.2.1.1 MsgID = DEV_DEP_MSG_OUT ...7
3.2.1.2 MsgID = REQUEST_DEV_DEP_MSG_IN ...8
3.2.1.3 MsgID = VENDOR_SPECIFIC_OUT..9
3.2.1.4 MsgID = REQUEST_VENDOR_SPECIFIC_IN ..10

3.2.2 Maintaining USBTMC Bulk-OUT USBTMC message synchronization ..10
3.2.2.1 Aborting a Bulk-OUT transfer...10
3.2.2.2 Aborting a Bulk-OUT USBTMC message ..10
3.2.2.3 Bulk-OUT transfer protocol errors ..10
3.2.2.4 Halt ..11

3.3 Bulk-IN endpoint ...11
3.3.1 Bulk-IN USBTMC response messages..13

3.3.1.1 MsgID = DEV_DEP_MSG_IN ...13
3.3.1.2 MsgID = VENDOR_SPECIFIC_IN..14

3.3.2 Maintaining USBTMC Bulk-IN USBTMC message synchronization ..15
3.3.2.1 Aborting a Bulk-IN transfer...15
3.3.2.2 Aborting a Bulk-IN USBTMC message ..15
3.3.2.3 Bulk-IN transfer protocol errors ..15
3.3.2.4 Halt ..15

3.4 Interrupt-IN ...16

4 CONTROL ENDPOINT REQUESTS...17

4.1 Standard requests ..17
4.1.1 CLEAR_FEATURE request wValue = ENDPOINT_HALT..17

4.1.1.1 USBTMC interface Bulk-OUT endpoints ...17
4.1.1.2 USBTMC interface Bulk-IN endpoints ...17

4.2 USBTMC class specific requests ..17
4.2.1 USBTMC requests...18

Revision 1.0 USBTMC Specification

April 14, 2003 v

4.2.1.1 USBTMC split transactions ...20
4.2.1.2 INITIATE_ABORT_BULK_OUT..21
4.2.1.3 CHECK_ABORT_BULK_OUT_STATUS ..22
4.2.1.4 INITIATE_ABORT_BULK_IN..23
4.2.1.5 CHECK_ABORT_BULK_IN_STATUS ..24
4.2.1.6 INITIATE_CLEAR ...26
4.2.1.7 CHECK_CLEAR_STATUS..27
4.2.1.8 GET_CAPABILITIES...28
4.2.1.9 INDICATOR_PULSE ...29

5 DESCRIPTORS...31

5.1 Device Descriptor...31

5.2 Device_Qualifier Descriptor ...32

5.3 Configuration Descriptor..32

5.4 Other_Speed_Configuration Descriptor..32

5.5 Interface Descriptor...33

5.6 Endpoint Descriptors...33
5.6.1 Bulk-IN Endpoint Descriptor...33
5.6.2 Bulk-OUT Endpoint Descriptor...33
5.6.3 Interrupt-IN Endpoint Descriptor ..33

5.7 String Descriptors..34
5.7.1 English (USA) character restrictions ...34

Figures
Figure 1 -- USBTMC communication model...4
Figure 2 -- Bulk-OUT USBTMC message sent with a single transfer ..7
Figure 3 -- Bulk-OUT USBTMC message sent with multiple transfers...8
Figure 4 -- Bulk-IN USBTMC message sent with multiple transfers...13

Tables
Table 1 -- USBTMC message Bulk-OUT Header ..5
Table 2 -- MsgID values ...6
Table 3 -- DEV_DEP_MSG_OUT Bulk-OUT Header with command specific content.....................................7
Table 4 -- REQUEST_DEV_DEP_MSG_IN Bulk-OUT Header with command specific content.....................9
Table 5 -- VENDOR_SPECIFIC_OUT Bulk-OUT Header with command specific content9
Table 6 -- REQUEST_VENDOR_SPECIFIC_IN Bulk-OUT Header with command specific content10
Table 7 -- Bulk-OUT protocol error handling ...10
Table 8 -- USBTMC Bulk-IN Header..11
Table 9 -- DEV_DEP_MSG_IN Bulk-IN Header with response specific content ...14
Table 10 – VENDOR_SPECIFIC_IN Bulk-IN Header with response specific content14
Table 11 -- Bulk-IN protocol error handling ...15
Table 12 -- Bulk-IN Halt error conditions..16
Table 13 -- Interrupt-IN DATA payload format...16
Table 14 -- USBTMC class specific request format...18

USBTMC Specification Revision 1.0

vi April 14, 2003

Table 15 -- USBTMC bRequest values..18
Table 16 -- USBTMC_status values ..19
Table 17 -- Device behavior after receiving a standard request during INITIATE ..21
Table 18 -- INITIATE_ABORT_BULK_OUT Setup packet ...22
Table 19 -- INITIATE_ABORT_BULK_OUT response packet..22
Table 20 -- INITIATE_ABORT_BULK_OUT USBTMC_status values...22
Table 21 -- CHECK_ABORT_BULK_OUT_STATUS Setup packet..23
Table 22 -- CHECK_ABORT_BULK_OUT_STATUS response format..23
Table 23 -- CHECK_ABORT_BULK_OUT_STATUS USBTMC_status values...23
Table 24 -- INITIATE_ABORT_BULK_IN Setup packet ...24
Table 25 -- INITIATE_ABORT_BULK_IN response format ...24
Table 26 -- INITIATE_ABORT_BULK_IN USBTMC_status values...24
Table 27 -- CHECK_ABORT_BULK_IN_STATUS Setup packet..25
Table 28 -- CHECK_ABORT_BULK_IN_STATUS response format..25
Table 29 -- CHECK_ABORT_BULK_IN_STATUS USBTMC_status values...25
Table 30 -- INITIATE_CLEAR Setup packet ...26
Table 31 -- INITIATE_CLEAR response format ...27
Table 32 -- INITIATE_CLEAR USBTMC_status values ..27
Table 33 -- CHECK_CLEAR_STATUS Setup packet ...27
Table 34 -- CHECK_CLEAR_STATUS response format ...28
Table 35 -- CHECK_CLEAR_STATUS USBTMC_status values...28
Table 36 -- GET_CAPABILITIES Setup packet ...28
Table 37 -- GET_CAPABILITIES response format ...29
Table 38 -- INDICATOR_PULSE Setup packet...29
Table 39 -- INDICATOR_PULSE response format...30
Table 40 -- Device Descriptor ..31
Table 41 -- Device_Qualifier Descriptor ..32
Table 42 -- Configuration Descriptor ...32
Table 43 -- Interface Descriptor...33
Table 44 -- USBTMC bInterfaceProtocol values..33
Table 45 -- Prohibited ASCII characters in USBTMC string descriptors...34

Revision 1.0 USBTMC Specification

April 14, 2003 1

1 Introduction

1.1 Purpose

This specification describes requirements for devices with a USB test and measurement class (USBTMC)
interface.

This specification assumes familiarity with the USB 2.0 Specification.

1.2 Scope

This specification specifies the shared attributes, common services, and data formats for devices with a
USBTMC compliant test and measurement interface. Protocol and interoperability requirements are set
so that Host software can manage multiple implementations based on this USBTMC specification.

This specification addresses the common specification needs that apply to the following kinds of test and
measurement devices:

• Minimal devices. Examples are A/D’s, D/A’s, sensors, and transducers.
• Devices that communicate with IEEE 488 messages. Specifications unique to USB IEEE 488 devices

are found in the USBTMC USB488 Subclass specification.
• Devices with sub-addressable components. Examples are mainframes with instrument cards.

The definition of Host API’s for communication with USBTMC interfaces is outside the scope of this
specification. USBTMC client software API’s and any other specifications needed to achieve USBTMC
interoperability will be documented in a future VISA specification.

1.3 Related Documents
• Universal Serial Bus Specification, Revision 2.0, April 27, 2000, http://www.usb.org
• ANSI X3.4-1986, American National Standard Code for Information Interchange Coded Character Set –

7-bit, http://www.ansi.org
• USB Test and Measurement Class USB488 subclass specification, Revision 1.0, http://www.usb.org
• VISA Specification, http://www.vxipnp.org

USBTMC Specification Revision 1.0

2 April 14, 2003

1.4 Terms and Abbreviations
Term Description

BCD Binary Coded Decimal
DATA The data field in a data packet. See the USB 2.0 specification, section 8.4.4.
device From the USB 2.0 specification: “A logical or physical entity that performs a function.

The actual entity described depends on the context of the reference. At the lowest level,
device may refer to a single hardware component, as in a memory device. At a higher level,
it may refer to a collection of hardware components that perform a particular function, such
as a USB interface device. At an even higher level, device may refer to the function
performed by an entity attached to the USB; for example, a data/FAX modem device.
Devices may be physical, electrical, addressable, and logical.
When used as a non-specific reference, a USB device is either a hub or a function.”

EOM End Of (USBTMC) Message
Function Layer Provides additional capabilities to the host via an appropriate matched client

software layer. See the USB 2.0 specification, Figure 5-2.
Host From the USB 2.0 specification: “The host computer system where the Host

Controller is installed. This includes the host software platform (CPU, bus, etc.) and
the operating system in use.”

IHV Independent Hardware Vendor.
IRP I/O Request Packet. From the USB 2.0 specification: “An identifiable request by a

software client to move data between itself (on the host) and an endpoint of a
device in an appropriate direction.”

listen-only A USBTMC interface is listen-only if it is not capable of sending Bulk-IN USBTMC
device dependent message data bytes. The USBTMC interface must still have a
Bulk-IN endpoint.

retire From the USB 2.0 specification: “The action of completing service for a transfer and
notifying the appropriate software client of the completion.”

talk-only A USBTMC interface is talk-only if it is not capable of processing any Bulk-OUT
USBTMC device dependent message data bytes. The USBTMC interface must still
have a Bulk-OUT endpoint.

transaction From the USB 2.0 specification: “The delivery of service to an endpoint; consists of a
token packet, optional data packet, and optional handshake packet. Specific packets
are allowed/required based on the transaction type.”

transfer From the USB 2.0 specification: “One or more bus transactions to move information
between a software client and its function.”

USBTMC client
software

USBTMC software resident on the host that interacts with the USB System Software
to arrange data transfer between a function and the host. The client is often the data
provider and consumer for transferred data.

Revision 1.0 USBTMC Specification

April 14, 2003 3

Term Description

USBTMC interface A collection of endpoints on a device that conform to the requirements in this USB
Test and Measurement Class specification and can be used to provide the
physical/signaling/packet connectivity to a Host. The interface descriptor must
have bInterfaceClass and bInterfaceSubClass equal to the appropriate values for a
USB Test and Measurement Class interface.

USBTMC
command message

A type of USBTMC message containing a command to be executed by a device.
Sent from a Host to a device.

USBTMC device
dependent
command message

A type of USBTMC command message in which the USBTMC message data bytes
are a sequence of bytes defined by the device vendor. Typically a query for a
measurement result or a request to change measurement state. Sent from a Host to a
device.

USBTMC message A communication between a Host and a USBTMC interface on a bulk pipe. The
types of USBTMC messages defined in this specification are USBTMC command
messages, USBTMC device dependent command messages, and USBTMC response
messages.

USBTMC message
data bytes

The Bulk-OUT DATA and Bulk-IN DATA bytes containing information that does
not include the Bulk-OUT Header, Bulk-IN Header, or extra alignment bytes sent to
meet transfer length requirements.

USBTMC response
message

A type of USBTMC message containing a response to a USBTMC command
message. Sent from a device to a Host.

USBTMC split
transaction

A transaction that consists of 2 parts. The first part (INITIATE) consists of a control
endpoint request to initiate an action, and the second part (CHECK_STATUS)
consists of a control endpoint request that returns the status of the INITIATE.

USBTMC vendor
specific command
message

A type of USBTMC command message in which the USBTMC message data bytes
are a sequence of bytes defined by the device vendor. A USBTMC vendor specific
command message is typically parsed differently than a USBTMC device dependent
command message. Sent from a Host to a device.

VISA Virtual Instrument Software Architecture

USBTMC Specification Revision 1.0

4 April 14, 2003

2 Overview
The general communication model for a USBTMC interface is shown below. USBTMC client software
must be able to support the endpoints shown in Figure 1. A USBTMC subclass specification may make
some of the endpoints optional.

Figure 1 -- USBTMC communication model

The control endpoint is required by the USB 2.0 specification.

The Bulk-OUT endpoint is required and is used to provide a high performance, guaranteed delivery data
path from the Host to the device. The Host must use the Bulk-OUT endpoint to send USBTMC command
messages to the device, and the device must process the USBTMC command messages in the order they
are received. The Host must also use the Bulk-OUT endpoint to set up all transfers on the Bulk-IN
endpoint.

The Bulk-IN endpoint is required and is used to provide a high performance, guaranteed delivery data
path from the device to the Host. The Host must use the Bulk-IN endpoint to receive USBTMC response
messages from the device.

The Interrupt-IN endpoint is used by the device to send notifications to the Host. A USBTMC subclass
specification may require an Interrupt-IN endpoint. If the interface descriptor has bInterfaceProtocol = 0,
then no subclass specification applies and the USBTMC interface is not required to have an Interrupt-IN
endpoint.

The Host USBTMC driver may optionally support additional endpoints if the endpoints are required by a
USBTMC subclass specification.

Revision 1.0 USBTMC Specification

April 14, 2003 5

3 Interface Endpoints and Characteristics

3.1 Default control endpoint

The default control endpoint must support control transfers as required in the USB 2.0 specification. The
default control endpoint is used to send standard, class, and vendor-specific requests to the device,
interface, or endpoint. The default control endpoint number must be 0.

3.2 Bulk-OUT endpoint

The Host uses the Bulk-OUT endpoint to send USBTMC command messages to the device. For all Bulk-
OUT USBTMC command messages, whether defined in this specification, a USBTMC subclass
specification, or some other specification, the Host must begin the first USB transaction in each Bulk-OUT
transfer of command message content with a Bulk-OUT Header. The Bulk-OUT Header is defined below
in Table 1.

Table 1 -- USBTMC message Bulk-OUT Header

Offset Field Size Value Description
0 MsgID 1 Value Specifies the USBTMC message and the type of the

USBTMC message. See Table 2.
1 bTag 1 Value A transfer identifier. The Host must set bTag

different than the bTag used in the previous Bulk-
OUT Header. The Host should increment the bTag
by 1 each time it sends a new Bulk-OUT Header.
The Host must set bTag such that 1<=bTag<=255.

2 bTagInverse 1 Value The inverse (one’s complement) of the bTag. For
example, the bTagInverse of 0x5B is 0xA4.

3 Reserved 1 0x00 Reserved. Must be 0x00.
4-11 USBTMC command

message specific
8 USBTMC command

message specific
USBTMC command message specific. See section
3.2.1.

MsgID values defined in this specification are shown below in Table 2.

USBTMC Specification Revision 1.0

6 April 14, 2003

Table 2 -- MsgID values

MsgID Direction
OUT=Host-to-device
IN=Device-to-Host

MACRO Description

0 Reserved Reserved Reserved
OUT DEV_DEP_MSG_OUT

The USBTMC message is a USBTMC device dependent
command message. See section 3.2.1.1.

1

IN (no defined response) There is no defined response for this USBTMC command
message.

OUT REQUEST_DEV_DEP_
MSG_IN

The USBTMC message is a USBTMC command message
that requests the device to send a USBTMC response
message on the Bulk-IN endpoint. See section 3.2.1.2.

2

IN DEV_DEP_MSG_IN

The USBTMC message is a USBTMC response message to
the REQUEST_DEV_DEP_MSG_IN. See section 3.3.1.1.

3-125 Reserved Reserved Reserved for USBTMC use.
OUT VENDOR_SPECIFIC_

OUT
The USBTMC message is a USBTMC vendor specific
command message. See section 3.2.1.3.

126

IN (no defined response) There is no defined response for this USBTMC command
message.

OUT REQUEST_VENDOR_
SPECIFIC_IN

The USBTMC message is a USBTMC command message
that requests the device to send a vendor specific USBTMC
response message on the Bulk-IN endpoint. See section
3.2.1.4

127

IN VENDOR_SPECIFIC_
IN

The USBTMC message is a USBTMC response message to
the REQUEST_VENDOR_SPECIFIC_IN. See section
3.3.1.2.

128-191 Reserved Reserved Reserved for USBTMC subclass use.
192-255 Reserved Reserved Reserved for VISA specification use.

The following rules apply to all Bulk-OUT USBTMC command messages. Unless noted, device behavior
when a particular rule is violated is shown in Table 7.
1. The Host must send the USBTMC message data bytes (if applicable) immediately after the USBTMC

Bulk-OUT Header in the same USB transaction in the same DATA payload, subject to maximum
packet size constraints.

2. The total number of bytes in each Bulk-OUT transaction must be a multiple of 4. The Host must add 0
to a maximum of 3 extra alignment bytes to the last transaction payload to achieve 4-byte (32-bit)
alignment. The alignment bytes should be 0x00-valued, but this is not required.

3. The Host must not send a new USBTMC Bulk-OUT Header if a previous Bulk-OUT transfer has not
yet completed.

4. The Host must consider a Bulk-OUT data transfer complete when it has transferred exactly the
amount of data expected (all of the message data bytes and alignment bytes). If the last data payload
is wMaxPacketSize, the Host should not send a zero-length packet. The device must consider the
transfer complete when it has received and processed exactly the amount of data expected or the
device received and processed a packet with payload size less than wMaxPacketSize. See the USB 2.0
specification, section 5.8.3.

5. The Host must send a complete USBTMC command message with a single transfer. This is illustrated
below in Figure 2. If the Host fails to do so, the device must Halt the Bulk-OUT endpoint. The only
exception is if, in the specification of a particular USBTMC command message, explicit permission is
given to send the command message with multiple transfers.

Revision 1.0 USBTMC Specification

April 14, 2003 7

Figure 2 -- Bulk-OUT USBTMC message sent with a single transfer

3.2.1 Bulk-OUT USBTMC command messages

3.2.1.1 MsgID = DEV_DEP_MSG_OUT

The Host uses MsgID = DEV_DEP_MSG_OUT to identify a transfer that sends a USBTMC device
dependent command message from the Host to a device.

The Bulk-OUT Header command specific content for this command is shown below in Table 3.

Table 3 -- DEV_DEP_MSG_OUT Bulk-OUT Header with command specific content

 Offset Field Size Value Description
 0-3 See Table 1. 4 See Table 1. See Table 1.

4-7 TransferSize 4 Number Total number of USBTMC message data bytes to be
sent in this USB transfer. This does not include the
number of bytes in this Bulk-OUT Header or
alignment bytes. Sent least significant byte first,
most significant byte last. TransferSize must be >
0x00000000.
D7…D1 Reserved. All bits must be 0. 8 bmTransfer

Attributes
1 Bitmap

D0 EOM.
1 - The last USBTMC message data byte

in the transfer is the last byte of the
USBTMC message.

0 – The last USBTMC message data byte
in the transfer is not the last byte of
the USBTMC message.

USBTMC
command

specific
content

9-11 Reserved 3 0x000000 Reserved. Must be 0x000000.

The following additional rules apply for this USBTMC command message:

USBTMC Specification Revision 1.0

8 April 14, 2003

1. The Host may send this USBTMC command message with multiple transfers, as the data becomes
available. This is illustrated below in Figure 3. This ability is needed because Host applications may
not send a complete message all at once. Another benefit of this ability is that some devices may
make use of USBTMC message content as it is delivered.

Figure 3 -- Bulk-OUT USBTMC message sent with multiple transfers

3.2.1.2 MsgID = REQUEST_DEV_DEP_MSG_IN

The Host uses MsgID = REQUEST_DEV_DEP_MSG_IN to identify the transfer as a USBTMC command
message to the device, allowing the device to send a USBTMC response message containing device
dependent message data bytes.

The REQUEST_DEV_DEP_MSG_IN Bulk-OUT Header and command specific content is shown below in
Table 4.

Revision 1.0 USBTMC Specification

April 14, 2003 9

Table 4 -- REQUEST_DEV_DEP_MSG_IN Bulk-OUT Header with command specific content

 Offset Field Size Value Description
 0-3 See Table 1. 4 See Table 1. See Table 1.

4-7 TransferSize 4 Number Maximum number of USBTMC message data bytes to
be sent in response to the command. This does not
include the number of bytes in this Bulk-IN Header or
alignment bytes. Sent least significant byte first, most
significant byte last. TransferSize must be >
0x00000000.
D7…D2 Reserved. All bits must be 0.
D1 TermCharEnabled.

1 – The Bulk-IN transfer must terminate
on the specified TermChar. The Host
may only set this bit if the USBTMC
interface indicates it supports
TermChar in the GET_CAPABILITIES
response packet.

0 – The device must ignore TermChar.

8 bmTransfer
Attributes

1 Bitmap

D0 Must be 0.
9 TermChar 1 Value If bmTransferAttributes.D1 = 1, TermChar is an 8-bit

value representing a termination character. If
supported, the device must terminate the Bulk-IN
transfer after this character is sent.
If bmTransferAttributes.D1 = 0, the device must ignore
this field.

USBTMC
command

specific
content

10-11 Reserved 2 0x0000 Reserved. Must be 0x0000.

3.2.1.3 MsgID = VENDOR_SPECIFIC_OUT

The Host uses MsgID = VENDOR_SPECIFIC_OUT to identify a transfer that sends a USBTMC vendor
specific command message from the Host to a device.

The Bulk-OUT Header command specific content for this command is shown below in Table 5.

Table 5 -- VENDOR_SPECIFIC_OUT Bulk-OUT Header with command specific content

 Offset Field Size Value Description
 0-3 See Table 1. 4 See Table 1. See Table 1.

4-7 TransferSize 4 Number Total number of USBTMC message data bytes to be
sent in this USB transfer. This does not include the
number of bytes in this Bulk-OUT Header or
alignment bytes. Sent least significant byte first,
most significant byte last. TransferSize must be >
0x00000000.

USBTMC
command

specific
content

8-11 Reserved 4 0x00000000 Reserved. Must be 0x0000000.

The following additional rules apply for this USBTMC command message:
1. The Host may send this USBTMC command message with multiple transfers, as the data becomes

available. This is illustrated in Figure 3. This ability is needed because Host applications may not
send a complete message all at once. Another benefit of this ability is that some devices may make
use of USBTMC message content as it is delivered.

USBTMC Specification Revision 1.0

10 April 14, 2003

3.2.1.4 MsgID = REQUEST_VENDOR_SPECIFIC_IN

The Host uses MsgID = REQUEST_VENDOR_SPECIFIC_IN to identify the transfer as a USBTMC
command message to the device, allowing the device to send a USBTMC response message containing
vendor specific message data bytes.

The REQUEST_VENDOR_SPECIFIC_IN Bulk-OUT Header and command specific content is shown
below in Table 6.

Table 6 -- REQUEST_VENDOR_SPECIFIC_IN Bulk-OUT Header with command specific content

 Offset Field Size Value Description
 0-3 See Table 1. 4 See Table 1. See Table 1.

4-7 TransferSize 4 Number Maximum number of USBTMC message data bytes to
be sent in response to the command. This does not
include the number of bytes in this Bulk-IN Header or
alignment bytes. Sent least significant byte first, most
significant byte last. TransferSize must be >
0x00000000.

USBTMC
command

specific
content

8-11 Reserved 4 0x00000000 Reserved. Must be 0x00000000.

3.2.2 Maintaining USBTMC Bulk-OUT USBTMC message synchronization

The behaviors described below must be followed to restore USBTMC message synchronization between
the Host and the USBTMC Bulk-OUT endpoint if synchronization has been lost.

If a USBTMC interface is “talk-only” and it receives a Bulk-OUT Header with MsgID =
DEV_DEP_MSG_OUT, the USBTMC device must behave as specified in Table 7, Index=2.

If a USBTMC interface is “listen-only” and it receives a Bulk-OUT Header with MsgID =
REQUEST_DEV_DEP_MSG_IN, the USBTMC device must behave as specified in Table 7, Index=2.

3.2.2.1 Aborting a Bulk-OUT transfer
If the Host must abort a Bulk-OUT transfer before the transfer completes, the Host must send an
INITIATE_ABORT_BULK_OUT request. See section 4.2.1.2.

3.2.2.2 Aborting a Bulk-OUT USBTMC message
If the Host must abort a USBTMC message before the USBTMC message completes, the Host must send
an INITIATE_CLEAR request. See section 4.2.1.6.

3.2.2.3 Bulk-OUT transfer protocol errors
Table 7 specifies device behavior when certain Bulk-OUT protocol errors occur.

Table 7 -- Bulk-OUT protocol error handling

Index Error USB device behavior
1 The device does not receive a complete

Bulk-OUT Header in the first transaction
of the transfer.

2 The device receives a Bulk-OUT Header
with an unsupported or unknown
MsgID.

The device, when it has detected the error, must Halt the Bulk-
OUT endpoint. The device must discard the header and any
other Bulk-OUT DATA received before the endpoint has been
Halted.

Revision 1.0 USBTMC Specification

April 14, 2003 11

3 The device receives a Bulk-OUT Header
with an illegal parameter or combination
of parameters, such as bTagInverse not
equal to the inverse of bTag.

4 The device, after it determines a Bulk-
OUT transfer completes, receives less
than the expected number of USBTMC
message data bytes.

The device must Halt the Bulk-OUT endpoint. The device
must forward all USBTMC message data bytes received to the
Function Layer and must discard all subsequently received
Bulk-OUT DATA (if any) before the endpoint has been Halted.
The device must ignore EOM.

5 The device, after it determines a Bulk-
OUT transfer completes, receives the
expected number of USBTMC message
data bytes but not the expected number
of alignment bytes.

The device, if it detects the error, must Halt the Bulk-OUT
endpoint. The device must forward the expected number of
USBTMC message data bytes received to the Function Layer
and must discard all subsequently received Bulk-OUT DATA
(if any) before the endpoint has been Halted.

6 The device, after it determines a Bulk-
OUT transfer completes, receives more
than the expected number of USBTMC
message data bytes and alignment bytes.

The device must Halt the Bulk-OUT endpoint. The device
must forward the expected number of USBTMC message data
bytes to the Function Layer and must discard all subsequently
received Bulk-OUT DATA before the endpoint has been
Halted.

3.2.2.4 Halt

The device must Halt the USBTMC interface Bulk-OUT endpoint if it detects an error described in Table
7. The device may Halt the endpoint for reasons other than those specified in Table 7.

The Host, when it receives a Bulk-OUT STALL handshake packet, must behave as specified in the USB
2.0 specification, sections 5.3.2 and 5.8.5. All Bulk-OUT IRPs to the endpoint must be retired. The Host
must send a CLEAR_FEATURE control endpoint request to clear the Halt condition.

3.3 Bulk-IN endpoint

The Host uses the Bulk-IN endpoint to read USBTMC response messages from the device. For all Bulk-IN
USBTMC response messages, whether defined in this specification, a USBTMC subclass specification, or
some other specification, the device must begin the first USB transaction in each Bulk-IN transfer of
USBTMC response message content with a Bulk-IN Header. The Bulk-IN Header is defined below in
Table 8.

Table 8 -- USBTMC Bulk-IN Header

Offset Field Size Value Description
0 MsgID 1 Value Must match MsgID in the USBTMC command

message transfer causing this response.
1 bTag 1 Value Must match bTag in the USBTMC command message

transfer causing this response.
2 bTagInverse 1 Value Must match bTagInverse in the USBTMC command

message transfer causing this response.
3 Reserved 1 0x00 Reserved. Must be 0x00.
4-11 USBTMC response

message specific
8 USBTMC

response
message
specific

USBTMC response message specific. See section 3.3.1.

The following rules apply to Bulk-IN USBTMC response messages. Unless noted, behavior when a
particular rule is violated is shown in Table 11 and Table 12.

USBTMC Specification Revision 1.0

12 April 14, 2003

1. USBTMC client software must queue a request to the USB Host Controller to send a USBTMC
command message that expects a response before queuing a request to the USB Host Controller that
will result in Bulk-IN requests being sent to the USBTMC interface.

2. If a USBTMC interface receives a Bulk-IN request prior to receiving a USBTMC command message
that expects a response, the device must NAK the request.

3. The device must not queue any Bulk-IN DATA until it receives a valid USBTMC command message
that expects a response.

4. The Host must consider the Bulk-IN transfer to be in progress once the transaction containing the
Bulk-OUT Header for the USBTMC command message has been ACKd.

5. The device must consider the Bulk-IN transfer to be in progress when the device parses the MsgID of
a valid USBTMC command message that expects a response.

6. The device is not required to respond immediately after receiving a USBTMC command message
that expects a response. A device must not send a DATA payload until a termination condition is
detected (EOM, TermChar, or the maximum number of USBTMC response message data bytes the
Host has specified to send are available) or until the device can not buffer any more data.

7. The first USB transaction in a Bulk-IN transfer must begin with a complete Bulk-IN Header.
8. The USBTMC message data bytes must immediately follow the USBTMC Bulk-IN Header in the

same USB transaction in the same DATA payload, subject to maximum packet size constraints.
9. A device may return less than the maximum number of USBTMC response message data bytes the

Host specified to send. When the Bulk-IN transfer is completed, if more message data bytes are
expected, the Host may send a new USBTMC command message to read the remainder of the
message.

10. The device must always terminate a Bulk-IN transfer by sending a short packet. The short packet
may be zero-length or non zero-length. The device may send extra alignment bytes (up to
wMaxPacketSize – 1) to avoid sending a zero-length packet. The alignment bytes should be 0x00-
valued, but this is not required. A device is not required to send any alignment bytes.

11. Once a transfer is terminated, the device must not queue any more Bulk-IN DATA until it receives
another USBTMC command message that expects a response.

12. A device may defer the parsing and processing of Bulk-OUT data while a Bulk-IN transfer is in
progress.

13. The device may send a Bulk-IN message using multiple transfers, as the data becomes available. This
is illustrated below in Figure 4. This ability is needed because some devices may not have enough
memory to buffer a complete USBTMC message. Another benefit of this ability is that some Hosts
may make use of USBTMC message content as it is delivered.

Revision 1.0 USBTMC Specification

April 14, 2003 13

Figure 4 -- Bulk-IN USBTMC message sent with multiple transfers

3.3.1 Bulk-IN USBTMC response messages

3.3.1.1 MsgID = DEV_DEP_MSG_IN

The device uses MsgID = DEV_DEP_MSG_IN to identify the transfer as a USBTMC response message to
the Host sending a MsgID = REQUEST_DEV_DEP_MSG_IN USBTMC command message. The response
specific content is shown in Table 9.

USBTMC Specification Revision 1.0

14 April 14, 2003

Table 9 -- DEV_DEP_MSG_IN Bulk-IN Header with response specific content

 Offset Field Size Value Description
 0-3 See Table 8. 4 See Table 8. See Table 8.

4-7 TransferSize 4 Number Total number of message data bytes to be sent in this
USB transfer. This does not include the number of bytes
in this header or alignment bytes. Sent least significant
byte first, most significant byte last. TransferSize must be
> 0x00000000.
D7…D2 Reserved. All bits must be 0.
D1 1 – All of the following are true:

• The USBTMC interface supports
TermChar

• The bmTransferAttributes.
TermCharEnabled bit was set in the
REQUEST_DEV_DEP_MSG_IN.

• The last USBTMC message data byte in
this transfer matches the TermChar in
the REQUEST_DEV_DEP_MSG_IN.

0 – One or more of the above conditions is
not met.

8 bmTransfer
Attributes

1 Bitmap

D0 EOM.
1 - The last USBTMC message data byte in

the transfer is the last byte of the
USBTMC message.

0 – The last USBTMC message data byte in
the transfer is not the last byte of the
USBTMC message.

USBTMC
response
specific
content

9-11 Reserved 3 0x000000 Reserved. Must be 0x000000.

The following rules apply to this USBTMC response message.
1. A device may set TransferSize larger than the number of message data bytes it can buffer, provided

the device knows the exact number of USBTMC message data bytes it will eventually send in the
transfer.

2. The Host must ignore EOM if the device does not send TransferSize message data bytes.

3.3.1.2 MsgID = VENDOR_SPECIFIC_IN

The device uses MsgID = VENDOR_SPECIFIC_IN to identify the transfer as a USBTMC response
message to the Host sending a MsgID = REQUEST_VENDOR_SPECIFIC_IN USBTMC command
message. The response specific content is shown in Table 10.

Table 10 – VENDOR_SPECIFIC_IN Bulk-IN Header with response specific content

 Offset Field Size Value Description
 0-3 See Table 8. 4 See Table 8. See Table 8.

4-7 TransferSize 4 Number Total number of message data bytes to be sent in this
USB transfer. This does not include the number of bytes
in this header or alignment bytes. Sent least significant
byte first, most significant byte last. TransferSize must be
> 0x00000000.

USBTMC
response
specific
content

8-11 Reserved 4 0x00000000 Reserved. Must be 0x00000000.

The following rules apply to this USBTMC response message.
1. A device may set TransferSize larger than the number of message data bytes it can buffer, provided

the device knows the exact number of USBTMC message data bytes it will eventually send in the
transfer.

Revision 1.0 USBTMC Specification

April 14, 2003 15

3.3.2 Maintaining USBTMC Bulk-IN USBTMC message synchronization

The sections below describe behaviors to restore USBTMC message synchronization between the Host
and the USBTMC Bulk-IN endpoint if synchronization has been lost.

3.3.2.1 Aborting a Bulk-IN transfer

If the USBTMC client software must abort a Bulk-IN transfer before the transfer completes, the USBTMC
client software must send an INITIATE_ABORT_BULK_IN request. See section 4.2.1.4.

3.3.2.2 Aborting a Bulk-IN USBTMC message
If the Host must abort a USBTMC message before the USBTMC message completes, the Host must send
an INITIATE_CLEAR request. See section 4.2.1.6 for rules pertaining to INITIATE_CLEAR.

3.3.2.3 Bulk-IN transfer protocol errors
Table 11 specifies USBTMC client software behavior when certain Bulk-IN protocol errors occur.

Table 11 -- Bulk-IN protocol error handling
Index Error Host behavior
1 The USBTMC client software does not

receive a complete Bulk-IN Header.
2 The USBTMC client software receives a

Bulk-IN Header with an unsupported or
unknown MsgID.

3 The USBTMC client software receives a
Bulk-IN Header with an illegal parameter or
combination of parameters, such as
bTagInverse not equal to the inverse of
bTag.

The USBTMC client software must discard the header and
all subsequently received Bulk-IN bytes. If the USBTMC
client software has not received a short packet, it must
send an INITIATE_ABORT_BULK_IN request to the
device. The USBTMC client software should return an
error indicating a protocol error has occurred.

4 The USBTMC client software, after a Bulk-
IN transfer completes, determines that the
device sent fewer than the expected number
of message data bytes.

The USBTMC client software must process the USBTMC
message data bytes. The USBTMC client software should
return an error indicating a protocol error has occurred.

5 The USBTMC client software receives more
than the expected number of message data
bytes and wMaxPacket-1 alignment bytes.

The USBTMC client software must process the expected
number of message data bytes and discard all additional
bytes. If the USBTMC client software has not received a
short packet, it must send an INITIATE_ABORT_
BULK_IN request to the device. The USBTMC client
software should return an error indicating a protocol error
has occurred.

3.3.2.4 Halt

The device must Halt the USBTMC interface Bulk-IN endpoint if it detects an error described in Table 12.
The device may Halt the endpoint for reasons other than those specified in Table 12.

If a USBTMC Bulk-IN endpoint acknowledges a Bulk-IN request with a STALL handshake packet, the
Host behavior is as specified in the USB 2.0 specification, section 5.3.2 and 5.8.5. All Bulk-IN IRPs to the
endpoint must be retired.

In addition, the Host must process all USBTMC message data bytes received, subject to the rules in Table
11. The Host must send a CLEAR_FEATURE request to clear the Bulk-IN endpoint Halt condition and
restore synchronization. See also section 4.1.1.2.

USBTMC Specification Revision 1.0

16 April 14, 2003

Table 12 -- Bulk-IN Halt error conditions

Index Error Device behavior

1 The device receives a USBTMC command
message that expects a response while a
Bulk-IN transfer is in progress.

The device, if it detects the error, must Halt the Bulk-IN
endpoint.

3.4 Interrupt-IN

The Interrupt-IN endpoint may be used by the device to send notifications to the Host. The formats of
notifications are defined in Table 13 and in USBTMC subclass documents.

Table 13 -- Interrupt-IN DATA payload format

Offset Field Size D7 D6 D5 D4...D0 Explanation
1 Notification bits Format of D6...D0 and all notification

bytes are defined in the applicable
subclass specification

0 1 Notification bits Format of D5...D0 and all notification
bytes are vendor specific. A Host may
ignore vendor specific notifications.

0 bNotify1 1

0 0 Notification bits Format of D5...D0 and all notification
bytes are reserved for USBTMC use.

1 bNotify2 N-1 Notification bytes Format specified according to D7...D6
in offset 0.

This specification places no restriction on N, the number of bytes in the notification.

The Host, after an Interrupt-IN transfer has completed, must interpret the first byte in the next Interrupt-
IN DATA payload as a new notification, beginning with bNotify1. Note that the USB 2.0 specification,
section 5.7.3, defines when an interrupt transfer must be considered complete. If no subclass specification
applies (bInterfaceProtocol = 0, see Table 44), or if the notification is a vendor specific request, the last
Interrupt-IN transaction must be a short packet (< wMaxPacketSize).

See the USB 2.0 specification, section 5.7.4, for when a device may send notifications and when Interrupt-
IN requests may be NAKd.

Revision 1.0 USBTMC Specification

April 14, 2003 17

4 Control endpoint requests

4.1 Standard requests
Devices must support the standard requests required by the USB 2.0 specification, section 9.4. In addition,
devices with USBTMC interfaces must follow the behaviors below.

4.1.1 CLEAR_FEATURE request wValue = ENDPOINT_HALT

The device, if the reason for the Halt no longer exists, must clear the Halt condition on the specified
endpoint. See the USB 2.0 Specification, section 9.4.1. Additional behaviors for devices with USBTMC
interfaces are described below.

4.1.1.1 USBTMC interface Bulk-OUT endpoints

The Host, after sending a CLEAR_FEATURE request to clear a Halt condition on a USBTMC interface
Bulk-OUT endpoint, must begin the next Bulk-OUT transaction with a Bulk-OUT Header.

The device, after receiving the CLEAR_FEATURE request, must interpret the first part of the next Bulk-
OUT transaction as a new USBTMC Bulk-OUT Header.

4.1.1.2 USBTMC interface Bulk-IN endpoints
The Host, after sending a CLEAR_FEATURE request to clear a Halt condition on a USBTMC interface
Bulk-IN endpoint, must interpret the next Bulk-IN transaction as a new transfer beginning with a new
USBTMC Bulk-IN Header.

The device, after receiving the CLEAR_FEATURE request, must not queue any Bulk-IN DATA until it
receives a USBTMC command message that expects a response.

4.2 USBTMC class specific requests

All USBTMC class specific requests must be sent with a Setup packet as shown below in Table 14.

USBTMC Specification Revision 1.0

18 April 14, 2003

Table 14 -- USBTMC class specific request format

Offset Field Size Value Description
Data transfer direction 0 - Host-to-device

1 - Device-to-host
D7

Varies according to request.
Type

0 - Standard
1 - Class
2 -Vendor
3 - Reserved

D6…D5

Type = Class for all control endpoint requests
specified in this USBTMC specification and for all
control endpoint requests specified in USBTMC
subclass specifications.
Recipient

0 - Device
1 - Interface
2 - Endpoint
3 - Other
4 – 31 - Reserved

0 bmRequestType 1 Bitmap

D4…D0

Varies according to request.
1 bRequest 1 Value If bmRequestType.Type = Class, see section 4.2.1
2 wValue 2 Value Word sized field that varies according to request. See the USB 2.0

specification, section 9.3.3.
4 wIndex 2 Index

or
Offset

Word sized field that varies according to request, typically used to pass
an index or offset. See the USB 2.0 specification, section 9.3.4.

6 wLength 2 Count Number of bytes to transfer if there is a Data stage. See the USB 2.0
specification, section 9.3.5. Varies according to request.

4.2.1 USBTMC requests

Table 15 below shows the USBTMC specific requests.

Table 15 -- USBTMC bRequest values

bRequest Name Required/
Optional

Comment

0 Reserved Reserved Reserved.
1 INITIATE_ABORT_BULK_OUT Required Aborts a Bulk-OUT transfer.
2 CHECK_ABORT_BULK_OUT_STATUS Required Returns the status of the previously sent

INITIATE_ABORT_BULK_OUT request.
3 INITIATE_ABORT_BULK_IN Required Aborts a Bulk-IN transfer.
4 CHECK_ABORT_BULK_IN_STATUS Required Returns the status of the previously sent

INITIATE_ABORT_BULK_IN request.
5 INITIATE_CLEAR Required Clears all previously sent pending and

unprocessed Bulk-OUT USBTMC message
content and clears all pending Bulk-IN transfers
from the USBTMC interface.

6 CHECK_CLEAR_STATUS Required Returns the status of the previously sent
INITIATE_CLEAR request.

7 GET_CAPABILITIES Required Returns attributes and capabilities of the
USBTMC interface.

8-63 Reserved Reserved Reserved for use by the USBTMC specification.

Revision 1.0 USBTMC Specification

April 14, 2003 19

64 INDICATOR_PULSE Optional A mechanism to turn on an activity indicator for
identification purposes. The device indicates
whether or not it supports this request in the
GET_CAPABILITIES response packet.

65-127 Reserved Reserved Reserved for use by the USBTMC specification.
128-191 Reserved Reserved Reserved for use by USBTMC subclass

specifications.
192-255 Reserved Reserved Reserved for use by the VISA specification.

All USBTMC class-specific requests return data to the Host (bmRequestType direction = Device-to-host)
and have a data payload that begins with a 1 byte USBTMC_status field. The USBTMC_status values are
defined below in Table 16.

Table 16 -- USBTMC_status values

USBTMC_status MACRO Recommended
interpretation
by Host
software

Description

0x00 Reserved Reserved Reserved
0x01 STATUS_SUCCESS Success Success
0x02 STATUS_PENDING Warning This status is valid if a device has received a

USBTMC split transaction CHECK_STATUS
request and the request is still being processed.
See 4.2.1.1.

0x03-0x1F Reserved Warning Reserved for USBTMC use.
0x20-0x3F Reserved Warning Reserved for subclass use.
0x40-0x7F Reserved Warning Reserved for VISA use.
0x80 STATUS_FAILED Failure Failure, unspecified reason, and a more specific

USBTMC_status is not defined.
0x81 STATUS_ TRANSFER_

NOT_IN_PROGRESS

 This status is only valid if a device has received
an INITIATE_ABORT_BULK_OUT or
INITIATE_ABORT_BULK_IN request and the
specified transfer to abort is not in progress.

0x82 STATUS_SPLIT_NOT_
IN_PROGRESS

Failure This status is valid if the device received a
CHECK_STATUS request and the device is not
processing an INITIATE request.

0x83 STATUS_SPLIT_
IN_PROGRESS

Failure This status is valid if the device received a new
class-specific request and the device is still
processing an INITIATE.

0x84-0x9F Reserved Failure Reserved for USBTMC use.
0xA0-0xBF Reserved Failure Reserved for subclass use.
0xC0-0xFF Reserved Failure Reserved for VISA use.

Processing of all USBTMC requests is subject to the same timing limitations for standard requests as
stated in the USB 2.0 Specification, section 9.2.6.4.

A response with USBTMC_status indicating a failure (>= 0x80) must contain all of the required response
bytes. The Host must ignore, except where specified otherwise, all response bytes in the response except
the USBTMC_status byte. Devices should send the most appropriate and most specific USBTMC_status.

Devices must follow the behavior described in the USB 2.0 Specification, section 9.2.7, when the device
receives a request that is not defined for the device, is inappropriate for the current setting of the device,
or has values that are not compatible with the request.

If a Host timeout occurs while waiting for a control endpoint response it is recommended that the Host
try one or more of the steps below to restore communications with the device:

USBTMC Specification Revision 1.0

20 April 14, 2003

1. Reset the device by sending a USBTMC device dependent message to the Bulk-OUT endpoint. This is
possible only if the device defines a USBTMC device dependent message to reset the device.

2. Reset the device by sending a USBTMC subclass defined USBTMC command message. This is
possible only if the relevant subclass for the device defines a USBTMC command message to reset the
device.

3. Do a PORT_RESET of the device. See the USB 2.0 specification, section 11.24.2.7.1.5. A Host executes
a PORT_RESET by sending a Setup packet to a hub. The Setup packet has bRequest =
SET_FEATURE, wValue = PORT_RESET, and wIndex = the port number for the unresponsive
device. The USB 2.0 specification, section 9.1.1.3, says the device must transition to the Default state
and that “After the device is successfully reset, the device must also respond successfully to device
and configuration descriptor requests and return appropriate information. “

4. Send another Setup transaction. The USB 2.0 specification, section 5.5.5 says “If a Setup transaction is
received by an endpoint before a previously initiated control transfer is completed, the device must
abort the current transfer/operation and handle the new control Setup transaction.”

4.2.1.1 USBTMC split transactions
USBTMC split transactions are specified for operations that on some test and measurement devices may
take a long time. USBTMC split transactions are done with an INITIATE request followed by a
CHECK_STATUS request. The following USBTMC requests are example USBTMC split transactions:
• INITIATE_ABORT_BULK_OUT (the INITIATE) and CHECK_ABORT_BULK_OUT_STATUS (the

CHECK_STATUS)
• INITIATE_ABORT_BULK_IN (the INITIATE) and CHECK_ABORT_BULK_IN_STATUS (the

CHECK_STATUS)
• INITIATE_CLEAR (the INITIATE) and CHECK_CLEAR_STATUS (the CHECK_STATUS)

The rules below apply to USBTMC split transactions:

1. After sending an INITIATE request, the USBTMC client software should not send control endpoint
requests other than CHECK_STATUS until a CHECK_STATUS response packet returns USBTMC_status
not equal to STATUS_PENDING. Exceptions are if:
a. The device’s INITIATE response packet USBTMC_status indicates a failure (>= 0x80). The

USBTMC client software must not send a CHECK_STATUS request.
b. A Host application specified timeout occurs within the USBTMC client software, control is

returned to the Host application, and the Host application then causes an unexpected control
endpoint request to be sent.

c. Some other action has caused the device to abort the INITIATE request.
2. After receiving the INITIATE request, the device must queue the appropriate control endpoint

response packet with the most appropriate USBTMC_status:
a. STATUS_SUCCESS. This is the appropriate USBTMC_status if the device has started to perform

the request.
b. STATUS_FAILED. The device, for some other reason, can not begin to perform the request.
c. STATUS_TRANSFER_NOT_IN_PROGRESS. Only valid when aborting a Bulk-Out or Bulk-IN

transfer. See INITIATE_ABORT_BULK_OUT and INITIATE_ABORT_BULK_IN.

The device must not return a USBTMC_status that the Host may interpret as a warning (See Table
16). USBTMC client software, if it does receive a warning USBTMC_status, must consider the
USBTMC split transaction complete and return an error to the Host application.

3. If a device receives an INITIATE request, sends a control endpoint response packet with
USBTMC_status = STATUS_SUCCESS, and then receives a new control endpoint request other than
the expected CHECK_STATUS, the device behaviors depend on the request type.
a. Class endpoint requests:

Revision 1.0 USBTMC Specification

April 14, 2003 21

If the device has a prepared CHECK_STATUS response packet, the device must discard it. All other
actions started by the INITIATE should complete. If all other actions have already completed, the
device must handle the new request. If the actions have not completed, the device must send the
appropriate response packet (as defined for the newly received class request) with
USBTMC_status = STATUS_SPLIT_IN_PROGRESS. Other than sending this response, the device
treats the request as a no-operation. A result of the USBTMC client software not reading and
processing the CHECK_STATUS response packet is that the device Bulk-IN FIFO may not be
empty.

b. Standard control endpoint requests:

Whenever possible, all actions started by the INITIATE should complete. If this is not possible,
due to a resource conflict between the device resources affected by the standard request and the
device resources being used or affected by the INITIATE, the device must abort the INITIATE.
Table 17 below specifies device behavior after receiving a valid standard request during an
INITIATE.

c. Vendor control endpoint requests:

The device must assume the USBTMC client software will never send a CHECK_STATUS request.
If the device has a prepared CHECK_STATUS response packet, the device must discard it. All other
actions started by the INITIATE should complete. If all other actions have completed, the device
must handle the new request. If the actions have not completed, the device must respond with a
Request Error.

Table 17 -- Device behavior after receiving a standard request during INITIATE

Standard request
received during
INITIATE

INITIATE
in progress

Device Behavior

SET_ADDRESS All As in the USB 2.0 specification, device behavior is not specified.
SET_
CONFIGURATION

All The device must complete the request. The device must abort the
INITIATE actions.

SET_INTERFACE All The device must complete the request. The device must abort the
INITIATE actions.

All other standard
requests

All Device must complete the request and also complete the INITIATE
actions.

4. The Host must not send a CHECK_STATUS unless the Host has sent an INITIATE.
5. A device must be ready to receive an INITIATE or CHECK_STATUS at any time.
6. If a device receives an unexpected CHECK_STATUS the device must return USBTMC_status =

STATUS_SPLIT_NOT_IN_PROGRESS.
7. If the device is Reset, the device must abort INITIATE actions.

4.2.1.2 INITIATE_ABORT_BULK_OUT

A Host may use the INITIATE_ABORT_BULK_OUT request to abort a Bulk-OUT transfer and restore
Bulk-OUT synchronization. A Host should only send an INITIATE_ABORT_BULK_OUT request when
re-synchronization is necessary (Note: This is USBTMC Bulk-OUT transfer re-synchronization, not the
USB defined DATA0/DATA1 toggle synchronization.)

A Host must not send an INITIATE_ABORT_BULK_OUT request unless all IRPs for Bulk-OUT
transactions to the endpoint have been retired.

For this request, the fields in the Setup packet are shown below in Table 18.

USBTMC Specification Revision 1.0

22 April 14, 2003

Table 18 -- INITIATE_ABORT_BULK_OUT Setup packet

bmRequestType 0xA2 (Dir = IN, Type = Class, Recipient = Endpoint)
bRequest INITIATE_ABORT_BULK_OUT, see Table 15.

D7...D0 The bTag value associated with the transfer to abort. wValue
D15...D8 Reserved. Must be 0x00.

wIndex Must specify direction and endpoint number per the USB 2.0 specification, section 9.3.4.
wLength 0x0002. Number of bytes to transfer per the USB 2.0 specification, section 9.3.5.

After receiving an INITIATE_ABORT_BULK_OUT request, the device must return a control endpoint
response packet as shown in Table 19.

Table 19 -- INITIATE_ABORT_BULK_OUT response packet

Offset Field Size Value Description
0 USBTMC_status 1 Value Status indication for this request. See Table 20.
1 bTag 1 Value The bTag for the the current Bulk-OUT transfer. If there is no current

Bulk-OUT transfer, bTag must be set to the bTag for the most recent
bulk-OUT transfer. If no Bulk-OUT transfer has ever been started, bTag
must be 0x00.

The USBTMC_status values for certain conditions are described below in Table 20.

Table 20 -- INITIATE_ABORT_BULK_OUT USBTMC_status values

USBTMC_
status

Device conditions Host behavior

STATUS_
SUCCESS

The device returns this status if the specified transfer is in
progress. The device must Halt the Bulk-OUT endpoint
and then queue the response packet. The device, after the
response packet is queued, must abort the specified Bulk-
OUT transfer. To abort the transfer, the device should:
1. If an operation is draining bytes from the Bulk-OUT

FIFO, stop the operation. If this is not possible, wait
for the draining operation to complete.

2. Remove (flush) any bytes that remain in the Bulk-
OUT FIFO.

The Host must continue to hold off any
new Bulk-OUT IRPs. The Host must
send CHECK_ABORT_BULK_
OUT_STATUS.

STATUS_
TRANSFER_
NOT_IN_
PROGRESS

The device returns this status if either:
• There is a transfer in progress, but the specified bTag

does not match.
• There is no transfer in progress, but the Bulk-OUT

FIFO is not empty.
The device must not Halt the Bulk-OUT endpoint.

The Host must not send
CHECK_ABORT_BULK_OUT_STATUS.
The Host may send INITIATE_
ABORT_BULK_OUT at a later time.

STATUS_
FAILED

The device returns this status if there is no transfer in
progress and the Bulk-OUT FIFO is empty. The device
must not Halt the Bulk-OUT endpoint.

All other
values, see
Table 16.

See Table 16. The device must not Halt the Bulk-OUT
endpoint.

The Host must not send
CHECK_ABORT_BULK_OUT_STATUS.

4.2.1.3 CHECK_ABORT_BULK_OUT_STATUS

The Host uses CHECK_ABORT_BULK_OUT_STATUS to determine if the device has completed all
processing associated with a previously received INITIATE_ABORT_BULK_OUT request.

For this request, the fields in the Setup packet are shown below in Table 21.

Revision 1.0 USBTMC Specification

April 14, 2003 23

Table 21 -- CHECK_ABORT_BULK_OUT_STATUS Setup packet

bmRequestType 0xA2 (Dir = IN, Type = Class, Recipient = Endpoint)
bRequest CHECK_ABORT_BULK_OUT_STATUS, see Table 15.
wValue Reserved. Must be 0x0000.
wIndex Must specify direction and endpoint number per the USB 2.0 specification, section 9.3.4.
wLength 0x0008. Number of bytes to transfer per the USB 2.0 specification, section 9.3.5.

After receiving a CHECK_ABORT_BULK_OUT_STATUS request, the device must return a control
endpoint response packet as shown in Table 22.

Table 22 -- CHECK_ABORT_BULK_OUT_STATUS response format

Offset Field Size Value Description
0 USBTMC_status 1 Value Status indication for this request. See Table 23.
1-3 Reserved 3 0x000000 Reserved. Must be 0x000000.
4 NBYTES_RXD 4 Number The total number of USBTMC message data bytes (not including

Bulk-OUT Header or alignment bytes) in the transfer received,
and not discarded, by the device. The device must always send
NBYTES_RXD bytes to the Function Layer. Sent least significant
byte first, most significant byte last.

The USBTMC_status values for certain conditions are described below in Table 23.

Table 23 -- CHECK_ABORT_BULK_OUT_STATUS USBTMC_status values

USBTMC_
status

Device conditions Host behavior

STATUS_
PENDING

The device has not yet aborted the specified
transfer and is unable to calculate
NBYTES_RXD,

The Host must continue to hold off any new Bulk-
OUT IRPs and must send a new
CHECK_ABORT_BULK_OUT_STATUS.

STATUS_
SUCCESS

The device has aborted the specified
transfer. The device must set NBYTES_RXD
to the appropriate value.

All other
values, see
Table 16.

See Table 16.

The Host must send a CLEAR_FEATURE control
endpoint request to clear the Bulk-OUT Halt. The
Host must not send CHECK_ABORT_BULK_
OUT_STATUS.

4.2.1.4 INITIATE_ABORT_BULK_IN

A Host may use the INITIATE_ABORT_BULK_IN request to abort a Bulk-IN transfer and restore Bulk-IN
synchronization. A Host should only send an INITIATE_ABORT_BULK_IN request when re-
synchronization is necessary (Note: This is USBTMC Bulk-IN transfer re-synchronization, not the USB
defined DATA0/DATA1 toggle synchronization.)

Prior to sending an INITIATE_ABORT_BULK_IN request, the Host must determine if there is a pending
Bulk-OUT IRP for a USBTMC command message that expects a response. If such an IRP is pending, the
Host must retire the IRP. The Host must still send an INITIATE_ABORT_BULK_IN.

The Host must not retire IRPs to the Bulk-IN endpoint prior to sending an INITIATE_ABORT_BULK_IN
request. This is because a Host may lose Bulk-IN DATA when IRPs are retired.

For this request, the fields in the Setup packet are shown below in Table 24.

USBTMC Specification Revision 1.0

24 April 14, 2003

Table 24 -- INITIATE_ABORT_BULK_IN Setup packet

bmRequestType 0xA2 (Dir = IN, Type = Class, Recipient = Endpoint)
bRequest INITIATE_ABORT_BULK_IN, see Table 15.

D7...D0 The bTag value associated with the transfer to abort. wValue
D15...D8 Reserved. Must be 0x00.

wIndex Must specify direction and endpoint number per the USB 2.0 specification, section 9.3.4.
wLength 0x0002. Number of bytes to transfer per the USB 2.0 specification, section 9.3.5.

After receiving an INITIATE_ABORT_BULK_IN request, the device must return a control endpoint
response packet as shown in Table 25.

Table 25 -- INITIATE_ABORT_BULK_IN response format

Offset Field Size Value Description
0 USBTMC_status 1 Value Status indication for this request. See Table 26.
1 bTag 1 Value The bTag for the current Bulk-IN transfer. If there is no current

Bulk-IN transfer, bTag must be set to the bTag for the most recent
bulk-IN transfer. If no Bulk-IN transfer has ever been started, bTag
must be 0x00.

The USBTMC_status values for certain conditions are described below in Table 26.

Table 26 -- INITIATE_ABORT_BULK_IN USBTMC_status values

USBTMC_
status

Device conditions Host behavior

STATUS_
SUCCESS

The device returns this status if the specified transfer is in
progress. The device, after the response packet is queued,
must abort the specified Bulk-IN transfer. To abort the
transfer, the device should:
1. If an operation is queuing message data bytes to the

Bulk-IN FIFO, stop the operation. If this is not
possible, wait for the queuing operation to complete.
The device should not remove (flush) packets already
queued in the Bulk-IN FIFO.

2. If a short packet has not been queued, queue a short
packet to terminate the transfer. If a short packet can
not yet be queued, wait until a short packet can be
queued.

The Host should continue reading from
the Bulk-IN endpoint until a short
packet is received.

The Host, after a short packet is
received, must send
CHECK_ABORT_BULK_IN_STATUS.

STATUS_
TRANSFER_
NOT_IN_
PROGRESS

The device returns this status if either:
• There is a transfer in progress, but the specified bTag

does not match.
• There is no transfer in progress, but the Bulk-OUT

FIFO is not empty.

The Host must not send
CHECK_ABORT_BULK_IN_STATUS.
The Host may send INITIATE_
ABORT_BULK_IN at a later time.

STATUS_
FAILED

The device returns this status if there is no transfer in
progress and the Bulk-OUT FIFO is empty.

All other
values, see
Table 16.

See Table 16.

The Host must not send
CHECK_ABORT_BULK_OUT_STATUS.
The Host must retire Bulk-IN IRP’s.

4.2.1.5 CHECK_ABORT_BULK_IN_STATUS

The Host uses CHECK_ABORT_BULK_IN_STATUS to determine if the device has completed all
processing associated with a previously received INITIATE_ABORT_BULK_IN request. The Host should
not send CHECK_ABORT_BULK_IN_STATUS until a short Bulk-IN packet has been received.

For this request, the fields in the Setup packet are shown below in Table 27.

Revision 1.0 USBTMC Specification

April 14, 2003 25

Table 27 -- CHECK_ABORT_BULK_IN_STATUS Setup packet

bmRequestType 0xA2 (Dir = IN, Type = Class, Recipient = Endpoint)
bRequest CHECK_ABORT_BULK_IN_STATUS, see Table 15.
wValue Reserved. Must be 0x0000.
wIndex Must specify direction and endpoint number per the USB 2.0 specification, section 9.3.4.
wLength 0x0008. Number of bytes to transfer per the USB 2.0 specification, section 9.3.5.

After receiving a CHECK_ABORT_BULK_IN_STATUS request, the device must return a control
endpoint response packet as shown in Table 28.

Table 28 -- CHECK_ABORT_BULK_IN_STATUS response format

Offset Field Size Value Description
0 USBTMC_status 1 Value Status indication for this request. See Table 29.

D7…D1 Reserved. All bits must be 0. 1 bmAbortBulkIn 1 Bitmap
D0 BulkInFifoBytes

1 - The device either has some queued DATA bytes in
the Bulk-IN FIFO or has a short packet that needs
to be sent to the Host. The USBTMC_status must
not be STATUS_SUCCESS.

0 – The Bulk-IN FIFO is empty.
2-3 Reserved 2 0x0000 Reserved. Must be 0x0000.
4-7 NBYTES_TXD 4 Number The total number of USBTMC message data bytes (not including

Bulk-IN Header or alignment bytes) sent in the transfer. Sent least
significant byte first, most significant byte last.

The USBTMC_status values for certain conditions are described below in Table 29.

Table 29 -- CHECK_ABORT_BULK_IN_STATUS USBTMC_status values

USBTMC_
status

Device conditions Host behavior

STATUS_
PENDING

The device returns this status if a short
packet has not been sent or the device is not
ready to receive a USBTMC command
message that expects a response.

If the device has 1 or more queued packets
the Host can read, the device must set
bmAbortBulkIn.D0 = 1.

If the device does not currently have any
packets queued for the Host to read, the
device must set bmAbortBulkIn.D0 = 0.

The device must set NBYTES_TXD =
0x00000000.

The Host must send CHECK_ABORT_BULK_IN_
STATUS at a later time. If bmAbortBulkIn.D0 = 1, the
Host should read from the Bulk-IN endpoint until a
short packet is received. The Host must ignore
NBYTES_TXD.

STATUS_
SUCCESS

The device returns this status if a short
packet has been sent, the Bulk-IN FIFO is
empty, and the device is ready to receive a
USBTMC command message that expects a
response. The device must set
NBYTES_TXD to the appropriate value. The
device must set bmAbortBulkIn.D0 = 0.

All other
values, see
Table 16.

See Table 16.

The Host must not send CHECK_ABORT_BULK_IN_
STATUS. The Host must send a USBTMC command
message that expects a response before sending
another Bulk-IN transaction.

The example below illustrates Host and device behaviors for this USBTMC split transaction:

USBTMC Specification Revision 1.0

26 April 14, 2003

Host transaction Device behavior

REQUEST_DEV_DEP_MSG_IN
USBTMC command message
with TransferSize=2048.

Device has 2048 USBTMC message data bytes to send and queues 2 full-speed
wMaxPacketSize (=64) DATA payloads to the Bulk-IN endpoint. The first DATA
payload has 64-12=52 message data bytes. The second DATA payload has 64
message data bytes. (Device will send 52+64=116 message data bytes.)

Bulk-IN request Device sends first DATA payload with a 12-byte Bulk-IN Header with
TransferSize=2048 followed by 52 USBTMC message data bytes.

INITIATE_ABORT_BULK_IN
request

Device sends an INITIATE_ABORT_BULK_IN response packet, with
USBTMC_status = STATUS_SUCCESS.

Device begins to abort the transfer.

Bulk-IN request

Device sends 64 DATA bytes. This is not a short packet and therefore the transfer
is not terminated yet.

After sending the packet, the device recognizes that all committed DATA has
been sent and also that the transfer is to be aborted. The device sets up a short
packet to be sent.

Bulk-IN request Device sends a short packet to terminate the transfer. This may be a zero-length
packet or up to a maximum of (wMaxPacketSize – 1) alignment bytes.

CHECK_ABORT_BULK_
IN_STATUS request

Device sends a CHECK_ABORT_BULK_OUT_STATUS response packet, with
USBTMC_status = STATUS_SUCCESS, NBYTES_TXD = 116.

After receiving a short packet, the Host must send a USBTMC command message that expects a response
prior to sending additional Bulk-IN transactions. The Host must interpret the next Bulk-IN transaction as
a new transfer, beginning with a new USBTMC Bulk-IN Header.

A USBTMC subclass specification may define additional requirements.

4.2.1.6 INITIATE_CLEAR

The Host uses INITIATE_CLEAR to clear all input buffers and output buffers associated with the
specified USBTMC interface.

Prior to sending an INITIATE_CLEAR request, a Host must:

1. If a Bulk-OUT transfer is in progress:
a. Retire all Bulk-OUT IRPs to the specified USBTMC interface.
b. Hold off any new Bulk-OUT IRPs to the specified USBTMC interface.

2. If a Bulk-IN transfer is in progress:
a. Retire all Bulk-IN IRPs to the specified USBTMC interface.
b. Hold off any new Bulk-IN IRPs to the specified USBTMC interface.

For this request, the fields in the Setup packet are shown below in Table 30.

Table 30 -- INITIATE_CLEAR Setup packet

bmRequestType 0xA1 (Dir = IN, Type = Class, Recipient = Interface)
bRequest INITIATE_CLEAR, see Table 15.
wValue 0x0000
wIndex Must specify interface number per the USB 2.0 specification, section 9.3.4.
wLength 0x0001. Number of bytes to transfer per the USB 2.0 specification, section 9.3.5.

After receiving an INITIATE_CLEAR request, the device must Halt the Bulk-OUT endpoint, queue the
control endpoint response shown in Table 31, and clear all input buffers and output buffers.

Revision 1.0 USBTMC Specification

April 14, 2003 27

Table 31 -- INITIATE_CLEAR response format

Offset Field Size Value Description
0 USBTMC_status 1 Value Status indication for this request. See Table 32.

The USBTMC_status values for certain conditions are described below in Table 32.

Table 32 -- INITIATE_CLEAR USBTMC_status values

USBTMC_
status

Device conditions Host behavior

STATUS_
SUCCESS

The device returns this status if it has set up a Halt condition on the
Bulk-OUT endpoint. The device, after the response packet is queued,
must clear input and output buffers. To clear input and output
buffers, the device should:
1. If an operation is draining bytes from the Bulk-OUT FIFO, stop

the operation. If this is not possible, wait for the draining
operation to complete.

2. Remove (flush) any bytes that remain in the Bulk-OUT FIFO.
3. If an operation is queuing message data bytes to the Bulk-IN

FIFO, stop the operation. If this is not possible, wait for the
queuing operation to complete.

4. Remove (flush) packets already queued in the Bulk-IN FIFO. If
the device can not remove queued packets:

a. Prepare to send a CHECK_CLEAR_STATUS response packet
with bmClear.D0 = 1.

b. If a short packet has not been queued, queue a short packet
to terminate the transfer. If a short packet can not be queued,
wait until a short packet can be queued.

5. Notify the Function Layer.

The Host must send
CHECK_CLEAR_STATUS.

All other
values, see
Table 16.

See Table 16. The device must not Halt the Bulk-OUT endpoint. The Host must not send
CHECK_CLEAR_STATUS.

4.2.1.7 CHECK_CLEAR_STATUS

The Host uses CHECK_CLEAR_STATUS to determine if the device has completed all processing
associated with a previously received INITIATE_CLEAR request.

For this request, the fields in the Setup packet are shown below in Table 33.

Table 33 -- CHECK_CLEAR_STATUS Setup packet

bmRequestType 0xA1 (Dir = IN, Type = Class, Recipient = Interface)
bRequest CHECK_CLEAR_STATUS, see Table 15.
wValue Reserved. Must be 0x0000.
wIndex Must specify interface number per the USB 2.0 specification, section 9.3.4.
wLength 0x0002. Number of bytes to transfer per the USB 2.0 specification, section 9.3.5.

Upon receiving the CHECK_CLEAR_STATUS request, the device must determine if it is still processing
an INITIATE_CLEAR and then queue the control endpoint response packet shown below in Table 34.

USBTMC Specification Revision 1.0

28 April 14, 2003

Table 34 -- CHECK_CLEAR_STATUS response format

Offset Field Size Value Description
0 USBTMC_status 1 Value Status indication for this request. See Table 35.

D7…D1 Reserved. All bits must be 0. 1 bmClear 1 Bitmap
D0 BulkInFifoBytes

1 - The device either has some queued DATA bytes
in the Bulk-IN FIFO that it could not remove,
or has a short packet that needs to be sent to
the Host. The USBTMC_status must not be
STATUS_SUCCESS.

0 – The device has completely removed queued
DATA in the Bulk-IN FIFO and the Bulk-IN
FIFO is empty.

The USBTMC_status values for certain conditions are described below in Table 35.

Table 35 -- CHECK_CLEAR_STATUS USBTMC_status values

USBTMC_
status

Device conditions Host behavior

STATUS_
PENDING

Either:
1. The device has not yet finished clearing

input buffers and output buffers.
2. The Bulk-IN FIFO is not empty.
3. The Function Layer is not ready for Bulk

transfers.

If the Bulk-IN FIFO is not empty, the device
must set bmClear.D0 = 1.

If the Bulk-IN FIFO is empty, the device
must set bmClear.D0 = 0.

If bmClear.D0 = 1, the Host should read from the
Bulk-IN endpoint until a short packet is received. The
Host must send CHECK_CLEAR_STATUS at a later
time.

STATUS_
SUCCESS

The device has finished clearing the input
and output buffers, the Bulk-IN FIFO is
empty, and the Function Layer is ready for
Bulk transfers. The device must set
bmClear.D0 = 0.

All other
values, see
Table 16.

See Table 16.

The Host must send a CLEAR_FEATURE request to
clear the Bulk-OUT Halt.

4.2.1.8 GET_CAPABILITIES

The Host uses GET_CAPABILITIES to read additional attributes and capabilities of a USBTMC interface.

For this request, the fields in the Setup packet are shown below in Table 36.

Table 36 -- GET_CAPABILITIES Setup packet

bmRequestType 0xA1 (Dir = IN, Type = Class, Recipient = Interface)
bRequest GET_CAPABILITIES, see Table 15.
wValue 0x0000
wIndex Must specify interface number per the USB 2.0 specification, section 9.3.4.
wLength 0x0018. Number of bytes to transfer per the USB 2.0 specification, section 9.3.5.

A device must be ready to receive a GET_CAPABILITIES request at any time.

When a device receives this request, the device must queue the control endpoint response shown below
in Table 37. Unless specified otherwise, all device capabilities are static.

Revision 1.0 USBTMC Specification

April 14, 2003 29

Table 37 -- GET_CAPABILITIES response format

Offset Field Size Value Description
0 USBTMC_status 1 Value Status indication for this request. See Table 16.
1 Reserved 1 0x00 Reserved. Must be 0x00.
2 bcdUSBTMC

2 BCD

(0x0100 or
greater)

BCD version number of the relevant USBTMC specification for
this USBTMC interface. Format is as specified for bcdUSB in the
USB 2.0 specification, section 9.6.1.
D7…D3 Reserved. All bits must be 0.
D2 1 – The USBTMC interface accepts the

INDICATOR_PULSE request.
0 – The USBTMC interface does not accept the

INDICATOR_PULSE request. The device, when
an INDICATOR_PULSE request is received,
must treat this command as a non-defined
command and return a STALL handshake
packet.

D1 1 – The USBTMC interface is talk-only.
0 – The USBTMC interface is not talk-only.

4 USBTMC
Interface
Capabilities

1 Bitmap

D0 1 – The USBTMC interface is listen-only.
0 – The USBTMC interface is not listen-only.

D7…D1 Reserved. All bits must be 0. 5 USBTMC
Device
Capabilities

1 Bitmap
D0 1 – The device supports ending a Bulk-IN transfer

from this USBTMC interface when a byte
matches a specified TermChar.

0 – The device does not support ending a Bulk-IN
transfer from this USBTMC interface when a
byte matches a specified TermChar.

6 Reserved 6 All bytes
must be
0x00.

Reserved for USBTMC use. All bytes must be 0x00.

12 Reserved 12 Reserved Reserved for USBTMC subclass use. If no subclass specification
applies, all bytes must be 0x00.

4.2.1.9 INDICATOR_PULSE

This request provides the Host with a mechanism to turn on an activity indicator for identification
purposes. A device indicates whether it supports this request in the GET_CAPABILITIES response
packet.

For this request, the fields in the Setup packet are shown below in Table 38.

Table 38 -- INDICATOR_PULSE Setup packet

bmRequestType 0xA1 (Dir = IN, Type = Class, Recipient = Interface)
bRequest INDICATOR_PULSE, see Table 15.
wValue 0x0000
wIndex Must specify interface number per the USB 2.0 specification, section 9.3.4.
wLength 0x0001. Number of bytes to transfer per the USB 2.0 specification, section 9.3.5.

A device must be ready to receive an INDICATOR_PULSE request at any time. If not implemented, the
device must respond with a Request Error.

When a device receives this request, the device must queue the control endpoint response shown below
in Table 39. If the device supports the request, the device then turns on an implementation-dependent
activity indicator for a human detectable length of time (recommend time is >= 500 milliseconds and <= 1
second). The activity indicator then automatically turns off.

USBTMC Specification Revision 1.0

30 April 14, 2003

A device may turn on an activity indicator for other reasons.

Table 39 -- INDICATOR_PULSE response format

Offset Field Size Value Description
0 USBTMC_status 1 Value Status indication for this request. See Table 16.

Revision 1.0 USBTMC Specification

April 14, 2003 31

5 Descriptors

5.1 Device Descriptor

Table 40 -- Device Descriptor

Offset Field Size Value Description
0 bLength 1 0x12 Size of this descriptor in bytes.
1 bDescriptorType 1 0x01 DEVICE Descriptor Type. See USB 2.0 specification, Table

9-5.
2 bcdUSB 2 BCD (0x0200

or greater)
Binary coded decimal field indicating the USB
specification level used in the design of this device. As
specified in USB 2.0 specification, section 9.6.1.

4 bDeviceClass 1 0x00 Class found in interface descriptor.
5 bDeviceSubClass 1 0x00 Subclass found in interface descriptor.
6 bDeviceProtocol 1 0x00 Protocol found in interface descriptor.
7 bMaxPacketSize0 1 Number As specified in USB 2.0 specification, section 9.6.1.
8 idVendor 2 ID Required. Vendor ID assigned to IHV by USB-IF
10 idProduct 2 ID Required. Product ID assigned by IHV
12 bcdDevice 2 BCD As specified in USB 2.0 specification, section 9.6.1.
14 iManufacturer 1 Index Index of string descriptor describing manufacturer.

Required to be non-zero. Specified in USB 2.0
specification, section 9.6.1 and section 5.7 of this USBTMC
document. The bLength for the iManufacturer string
descriptor must be >= 4 and <= 128 (1 <= number of
Unicode characters <= 63).

15 iProduct 1 Index Index of string descriptor describing product. Required to
be non-zero. Specified in USB 2.0 specification, section
9.6.1 and section 5.7 of this USBTMC document. The
bLength for the iProduct string descriptor must be >= 4
and <= 128 (1 <= number of Unicode characters <= 63).

16 iSerialNumber 1 Index Index of string descriptor describing the device’s serial
number. Required to be non-zero. Specified in USB 2.0
specification, section 9.6.1 and section 5.7 of this USBTMC
document. The combination of idVendor, idProduct, and
iSerialNumber must be unique for every instance of a
device. The bLength for the iSerialNumber string
descriptor must be >= 4 and <= 128 (1 <= number of
Unicode characters <= 63).

17 bNumConfigurations 1 Number As specified in USB 2.0 specification, section 9.6.1.

The iSerialNumber index is required to be non-zero because there must be no ambiguity when a Host
attempts to communicate with a device. The Host may generate a globally unique identifier by
concatenating the 16 bit idVendor, the 16-bit idProduct, and the value represented by the string
descriptor indexed by iSerialNumber.

All of the string descriptors indexed within the Device Descriptor (iManufacturer, iProduct, and
iSerialNumber) may be displayed to the user when a device is first added to a topology. It is
recommended that they contain meaningful, human-readable strings.

USBTMC Specification Revision 1.0

32 April 14, 2003

5.2 Device_Qualifier Descriptor

Table 41 -- Device_Qualifier Descriptor

Offset Field Size Value Description
0 bLength 1 0x0A Size of this descriptor in bytes.
1 bDescriptorType 1 0x06 DEVICE QUALIFIER Descriptor Type. See USB 2.0

specification, Table 9-5.
2 bcdUSB 2 BCD USB specification version number

(e.g., 0200H for V2.00).
4 bDeviceClass 1 0x00 Class found in interface descriptor.
5 bDeviceSubClass 1 0x00 Subclass found in interface descriptor.
6 bDeviceProtocol 1 0x00 Protocol found in interface descriptor.
7 bMaxPacketSize0 1 Number Maximum packet size for other speed.
8 bNumConfigurations 1 Number Number of Other-speed Configurations.
9 Reserved 1 0x00 Reserved for future use, must be zero

5.3 Configuration Descriptor

Table 42 -- Configuration Descriptor

Offset Field Size Value Description
0 bLength 1 0x09 Size of this descriptor in bytes.
1 bDescriptorType 1 0x02 CONFIGURATION Descriptor Type. See USB 2.0

specification, Table 9-5.
2 wTotalLength 2 Number Total length of data returned for this configuration.

Includes the combined length of all descriptors
(configuration, interface, endpoint, and class-or vendor-
specific returned for this configuration.

4 bNumInterfaces 1 Number Number of interfaces supported by this configuration.
A device may have multiple USBTMC interfaces.

5 bConfigurationValue 1 Number Value to use as an argument to the SetConfiguration()
request to select this configuration.

6 iConfiguration 1 Index Index of string describing this configuration.
7 bmAttributes 1 Bitmap Configuration characteristics defined by the USB 2.0

specification, section 9.6.3.
8 bMaxPower 1 mA Maximum power consumption per the USB 2.0

specification, section 9.6.3.

5.4 Other_Speed_Configuration Descriptor

The format of the Other_Speed_Configuration descriptor is specified in the USB 2.0 specification, section
9.6.4.

Revision 1.0 USBTMC Specification

April 14, 2003 33

5.5 Interface Descriptor

Table 43 -- Interface Descriptor

Offset Field Size Value Description
0 bLength 1 0x09 Size of this descriptor in bytes.
1 bDescriptorType 1 0x04 INTERFACE Descriptor Type. See USB 2.0

specification, Table 9-5.
2 bInterfaceNumber 1 Number Number of this interface. Zero-based value

identifying the index in the array of concurrent
interfaces supported by this configuration.

3 bAlternateSetting 1 0x00 Value used to select this alternate setting for the
interface identified in the prior field.

4 bNumEndpoints 1 Number Number of endpoints used by this interface
(excluding endpoint zero). If this value is zero, this
interface only uses the Default Control Pipe.

5 bInterfaceClass 1 Class = 0xFE “Application-Class” class code, assigned by USB-IF.
The Host must not load a USBTMC driver based on
just the bInterfaceClass field.

6 bInterfaceSubClass 1 0x03 Subclass code, assigned by USB-IF.
7 bInterfaceProtocol 1 Protocol Protocol code. See Table 44.
8 iInterface 1 Index Index of string descriptor describing this interface.

Table 44 -- USBTMC bInterfaceProtocol values

bInterfaceProtocol
Value Description
0 USBTMC interface. No subclass specification applies.
1 USBTMC USB488 interface. See the USB488 subclass specification.
2-127 Reserved

A USBTMC interface with a bInterfaceProtocol = 0x00 must have exactly one Bulk-OUT endpoint, exactly
one Bulk-IN endpoint, and may have at most one Interrupt-IN endpoint. Additional endpoints must be
placed in another interface.

5.6 Endpoint Descriptors

5.6.1 Bulk-IN Endpoint Descriptor

The format of the Bulk-OUT endpoint descriptor is specified in the USB 2.0 specification, section 9.6.6.

5.6.2 Bulk-OUT Endpoint Descriptor
The format of the Bulk-OUT endpoint descriptor is specified in the USB 2.0 specification, section 9.6.6.
For USBTMC interfaces, wMaxPacketSize Bits 10…0 (maximum packet size in bytes) must be a multiple
of 4.

5.6.3 Interrupt-IN Endpoint Descriptor

The format of the Interrupt-IN endpoint descriptor is specified in the USB 2.0 specification, section 9.6.6.

USBTMC Specification Revision 1.0

34 April 14, 2003

5.7 String Descriptors

The format of string descriptors are as specified in the USB 2.0 specification, section 9.6.7. All devices with
a USBTMC interface must implement string descriptors with LANGID = 0x0409 (English, United States).
A device may support additional LANGID values.

All devices containing a USBTMC interface must comply with the restrictions on string descriptors
described in section 5 of this specification.

5.7.1 English (USA) character restrictions

The English (USA) characters used in String Descriptors must map to the set of ASCII characters in the
following range: 0x20 (’ ’) to ASCII character 0x7E (‘~’).

In addition, characters must not map to any of the following ASCII characters:

Table 45 -- Prohibited ASCII characters in USBTMC string descriptors

Hex Value Character Comment
0x22 ” double-quote
0x2A * asterisk
0x2F / forward-slash
0x3A : colon
0x3F ? question-mark
0x5C \ Backslash

There must not be any leading or trailing characters that map to the ASCII blank space (0x20 = ‘ ‘)
character.

