1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
|
% Generate transfer functions for loop shaping stability (uncertainty)
% requirements from parameters specified in uav_params.m
%
% Copyright (C) 2024, Naoki Sean Pross, ETH Zürich
% This work is distributed under a permissive license, see LICENSE.txt
%
% Arguments:
% PARAMS Struct of design parameters and constants generated by uav_params
% PLOT When set to 'true' it plots the inverse magnitude of the
% performance transfer function
%
% Return value:
% UNCERT Struct of uncertainty transfer functions
function [uncert] = uav_performance(params, do_plots)
s = tf('s');
% relative errors
eps_T = params.aerodynamics.ThrustOmegaPropUncertainty;
eps_r = params.mechanical.GyroscopicInertiaZUncertainty;
eps_S = params.aerodynamics.FlapAreaUncertainty;
eps_l = params.aerodynamics.LiftCoefficientUncertainty;
eps_d = params.aerodynamics.DragCoefficientsUncertainties(1);
% eps_0 = params.aerodynamics.DragCoefficients(2);
eps_omega = max(.5 * eps_T, eps_r);
eps_alpha = max(eps_l + eps_S + 2 * eps_omega, eps_S + eps_d + eps_omega)
b = 12;
T = 1;
G = make_weight(b, 4, 1);
W_malpha = eps_alpha * tf(1);
W_momega = eps_omega * tf(1);
W_mState = (1 - tf(1, [T, 1])) * blkdiag( ...
.2 * eye(3), ...
.1 * eye(3), ...
.2 * eye(3) ...
);
uncert = struct(...
'FlapAngleEpsilon', eps_alpha, ...
'ThrustEpsilon', eps_omega, ...
'FlapAngle', W_malpha * eye(4), ...
'Thrust', W_momega, ...
'StateLinApprox', W_mState);
if do_plots
% Bode plots of performance requirements
figure; hold on;
bodemag(W_malpha);
bodemag(W_momega);
bodemag(W_mState(1,1));
bodemag(W_mState(4,4));
bodemag(W_mState(7,7));
grid on;
legend('$W_{m,\alpha}$', '$W_{m,\omega}$', ...
... % '$W_{m,\mathbf{P}}$', ...
'$W_{m,\mathbf{\dot{P}}}$', ...
'$W_{m,\mathbf{\Theta}}$', ...
'$W_{m,\mathbf{\Omega}}$', ...
'interpreter', 'latex')
title('\bfseries Stability Requirement (only for $\mu$-Synthesis)', ...
'interpreter', 'latex')
end
end
% Make a n-order performance weight function
%
% Arguments:
% OMEGA Cutting frequency (-3dB)
% A Magnitude at DC, i.e. |Wp(0)|
% M Magnitude at infinity, i.e. |Wp(inf)|
% ORD Order
function [Wp] = make_weight(omega, A, M, ord)
if nargin > 3
n = ord;
else
n = 1;
end
s = tf('s');
Wp = (s / (M^(1/n)) + omega)^n / (s + omega * A^(1/n))^n;
end
% vim: ts=2 sw=2 et:
|