summaryrefslogtreecommitdiffstats
path: root/src/EigenUnsupported/src/SpecialFunctions/SpecialFunctionsImpl.h
blob: f1c260e29450eb6b557e664138b8093d343a6f9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SPECIAL_FUNCTIONS_H
#define EIGEN_SPECIAL_FUNCTIONS_H

namespace Eigen {
namespace internal {

//  Parts of this code are based on the Cephes Math Library.
//
//  Cephes Math Library Release 2.8:  June, 2000
//  Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
//
//  Permission has been kindly provided by the original author
//  to incorporate the Cephes software into the Eigen codebase:
//
//    From: Stephen Moshier
//    To: Eugene Brevdo
//    Subject: Re: Permission to wrap several cephes functions in Eigen
//
//    Hello Eugene,
//
//    Thank you for writing.
//
//    If your licensing is similar to BSD, the formal way that has been
//    handled is simply to add a statement to the effect that you are incorporating
//    the Cephes software by permission of the author.
//
//    Good luck with your project,
//    Steve


/****************************************************************************
 * Implementation of lgamma, requires C++11/C99                             *
 ****************************************************************************/

template <typename Scalar>
struct lgamma_impl {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
                        THIS_TYPE_IS_NOT_SUPPORTED);
    return Scalar(0);
  }
};

template <typename Scalar>
struct lgamma_retval {
  typedef Scalar type;
};

#if EIGEN_HAS_C99_MATH
// Since glibc 2.19
#if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 19) || __GLIBC__>2) \
 && (defined(_DEFAULT_SOURCE) || defined(_BSD_SOURCE) || defined(_SVID_SOURCE))
#define EIGEN_HAS_LGAMMA_R
#endif

// Glibc versions before 2.19
#if defined(__GLIBC__) && ((__GLIBC__==2 && __GLIBC_MINOR__ < 19) || __GLIBC__<2) \
 && (defined(_BSD_SOURCE) || defined(_SVID_SOURCE))
#define EIGEN_HAS_LGAMMA_R
#endif

template <>
struct lgamma_impl<float> {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE float run(float x) {
#if !defined(EIGEN_GPU_COMPILE_PHASE) && defined (EIGEN_HAS_LGAMMA_R) && !defined(__APPLE__)
    int dummy;
    return ::lgammaf_r(x, &dummy);
#elif defined(SYCL_DEVICE_ONLY)
    return cl::sycl::lgamma(x);
#else
    return ::lgammaf(x);
#endif
  }
};

template <>
struct lgamma_impl<double> {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE double run(double x) {
#if !defined(EIGEN_GPU_COMPILE_PHASE) && defined(EIGEN_HAS_LGAMMA_R) && !defined(__APPLE__)
    int dummy;
    return ::lgamma_r(x, &dummy);
#elif defined(SYCL_DEVICE_ONLY)
    return cl::sycl::lgamma(x);
#else
    return ::lgamma(x);
#endif
  }
};

#undef EIGEN_HAS_LGAMMA_R
#endif

/****************************************************************************
 * Implementation of digamma (psi), based on Cephes                         *
 ****************************************************************************/

template <typename Scalar>
struct digamma_retval {
  typedef Scalar type;
};

/*
 *
 * Polynomial evaluation helper for the Psi (digamma) function.
 *
 * digamma_impl_maybe_poly::run(s) evaluates the asymptotic Psi expansion for
 * input Scalar s, assuming s is above 10.0.
 *
 * If s is above a certain threshold for the given Scalar type, zero
 * is returned.  Otherwise the polynomial is evaluated with enough
 * coefficients for results matching Scalar machine precision.
 *
 *
 */
template <typename Scalar>
struct digamma_impl_maybe_poly {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
                        THIS_TYPE_IS_NOT_SUPPORTED);
    return Scalar(0);
  }
};


template <>
struct digamma_impl_maybe_poly<float> {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE float run(const float s) {
    const float A[] = {
      -4.16666666666666666667E-3f,
      3.96825396825396825397E-3f,
      -8.33333333333333333333E-3f,
      8.33333333333333333333E-2f
    };

    float z;
    if (s < 1.0e8f) {
      z = 1.0f / (s * s);
      return z * internal::ppolevl<float, 3>::run(z, A);
    } else return 0.0f;
  }
};

template <>
struct digamma_impl_maybe_poly<double> {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE double run(const double s) {
    const double A[] = {
      8.33333333333333333333E-2,
      -2.10927960927960927961E-2,
      7.57575757575757575758E-3,
      -4.16666666666666666667E-3,
      3.96825396825396825397E-3,
      -8.33333333333333333333E-3,
      8.33333333333333333333E-2
    };

    double z;
    if (s < 1.0e17) {
      z = 1.0 / (s * s);
      return z * internal::ppolevl<double, 6>::run(z, A);
    }
    else return 0.0;
  }
};

template <typename Scalar>
struct digamma_impl {
  EIGEN_DEVICE_FUNC
  static Scalar run(Scalar x) {
    /*
     *
     *     Psi (digamma) function (modified for Eigen)
     *
     *
     * SYNOPSIS:
     *
     * double x, y, psi();
     *
     * y = psi( x );
     *
     *
     * DESCRIPTION:
     *
     *              d      -
     *   psi(x)  =  -- ln | (x)
     *              dx
     *
     * is the logarithmic derivative of the gamma function.
     * For integer x,
     *                   n-1
     *                    -
     * psi(n) = -EUL  +   >  1/k.
     *                    -
     *                   k=1
     *
     * If x is negative, it is transformed to a positive argument by the
     * reflection formula  psi(1-x) = psi(x) + pi cot(pi x).
     * For general positive x, the argument is made greater than 10
     * using the recurrence  psi(x+1) = psi(x) + 1/x.
     * Then the following asymptotic expansion is applied:
     *
     *                           inf.   B
     *                            -      2k
     * psi(x) = log(x) - 1/2x -   >   -------
     *                            -        2k
     *                           k=1   2k x
     *
     * where the B2k are Bernoulli numbers.
     *
     * ACCURACY (float):
     *    Relative error (except absolute when |psi| < 1):
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0,30        30000       1.3e-15     1.4e-16
     *    IEEE      -30,0       40000       1.5e-15     2.2e-16
     *
     * ACCURACY (double):
     *    Absolute error,  relative when |psi| > 1 :
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      -33,0        30000      8.2e-7      1.2e-7
     *    IEEE      0,33        100000      7.3e-7      7.7e-8
     *
     * ERROR MESSAGES:
     *     message         condition      value returned
     * psi singularity    x integer <=0      INFINITY
     */

    Scalar p, q, nz, s, w, y;
    bool negative = false;

    const Scalar nan = NumTraits<Scalar>::quiet_NaN();
    const Scalar m_pi = Scalar(EIGEN_PI);

    const Scalar zero = Scalar(0);
    const Scalar one = Scalar(1);
    const Scalar half = Scalar(0.5);
    nz = zero;

    if (x <= zero) {
      negative = true;
      q = x;
      p = numext::floor(q);
      if (p == q) {
        return nan;
      }
      /* Remove the zeros of tan(m_pi x)
       * by subtracting the nearest integer from x
       */
      nz = q - p;
      if (nz != half) {
        if (nz > half) {
          p += one;
          nz = q - p;
        }
        nz = m_pi / numext::tan(m_pi * nz);
      }
      else {
        nz = zero;
      }
      x = one - x;
    }

    /* use the recurrence psi(x+1) = psi(x) + 1/x. */
    s = x;
    w = zero;
    while (s < Scalar(10)) {
      w += one / s;
      s += one;
    }

    y = digamma_impl_maybe_poly<Scalar>::run(s);

    y = numext::log(s) - (half / s) - y - w;

    return (negative) ? y - nz : y;
  }
};

/****************************************************************************
 * Implementation of erf, requires C++11/C99                                *
 ****************************************************************************/

/** \internal \returns the error function of \a a (coeff-wise)
    Doesn't do anything fancy, just a 13/8-degree rational interpolant which
    is accurate up to a couple of ulp in the range [-4, 4], outside of which
    fl(erf(x)) = +/-1.

    This implementation works on both scalars and Ts.
*/
template <typename T>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T generic_fast_erf_float(const T& a_x) {
  // Clamp the inputs to the range [-4, 4] since anything outside
  // this range is +/-1.0f in single-precision.
  const T plus_4 = pset1<T>(4.f);
  const T minus_4 = pset1<T>(-4.f);
  const T x = pmax(pmin(a_x, plus_4), minus_4);
  // The monomial coefficients of the numerator polynomial (odd).
  const T alpha_1 = pset1<T>(-1.60960333262415e-02f);
  const T alpha_3 = pset1<T>(-2.95459980854025e-03f);
  const T alpha_5 = pset1<T>(-7.34990630326855e-04f);
  const T alpha_7 = pset1<T>(-5.69250639462346e-05f);
  const T alpha_9 = pset1<T>(-2.10102402082508e-06f);
  const T alpha_11 = pset1<T>(2.77068142495902e-08f);
  const T alpha_13 = pset1<T>(-2.72614225801306e-10f);

  // The monomial coefficients of the denominator polynomial (even).
  const T beta_0 = pset1<T>(-1.42647390514189e-02f);
  const T beta_2 = pset1<T>(-7.37332916720468e-03f);
  const T beta_4 = pset1<T>(-1.68282697438203e-03f);
  const T beta_6 = pset1<T>(-2.13374055278905e-04f);
  const T beta_8 = pset1<T>(-1.45660718464996e-05f);

  // Since the polynomials are odd/even, we need x^2.
  const T x2 = pmul(x, x);

  // Evaluate the numerator polynomial p.
  T p = pmadd(x2, alpha_13, alpha_11);
  p = pmadd(x2, p, alpha_9);
  p = pmadd(x2, p, alpha_7);
  p = pmadd(x2, p, alpha_5);
  p = pmadd(x2, p, alpha_3);
  p = pmadd(x2, p, alpha_1);
  p = pmul(x, p);

  // Evaluate the denominator polynomial p.
  T q = pmadd(x2, beta_8, beta_6);
  q = pmadd(x2, q, beta_4);
  q = pmadd(x2, q, beta_2);
  q = pmadd(x2, q, beta_0);

  // Divide the numerator by the denominator.
  return pdiv(p, q);
}

template <typename T>
struct erf_impl {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE T run(const T& x) {
    return generic_fast_erf_float(x);
  }
};

template <typename Scalar>
struct erf_retval {
  typedef Scalar type;
};

#if EIGEN_HAS_C99_MATH
template <>
struct erf_impl<float> {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE float run(float x) {
#if defined(SYCL_DEVICE_ONLY)
    return cl::sycl::erf(x);
#else
    return generic_fast_erf_float(x);
#endif
  }
};

template <>
struct erf_impl<double> {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE double run(double x) {
#if defined(SYCL_DEVICE_ONLY)
    return cl::sycl::erf(x);
#else
    return ::erf(x);
#endif
  }
};
#endif  // EIGEN_HAS_C99_MATH

/***************************************************************************
* Implementation of erfc, requires C++11/C99                               *
****************************************************************************/

template <typename Scalar>
struct erfc_impl {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
                        THIS_TYPE_IS_NOT_SUPPORTED);
    return Scalar(0);
  }
};

template <typename Scalar>
struct erfc_retval {
  typedef Scalar type;
};

#if EIGEN_HAS_C99_MATH
template <>
struct erfc_impl<float> {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE float run(const float x) {
#if defined(SYCL_DEVICE_ONLY)
    return cl::sycl::erfc(x);
#else
    return ::erfcf(x);
#endif
  }
};

template <>
struct erfc_impl<double> {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE double run(const double x) {
#if defined(SYCL_DEVICE_ONLY)
    return cl::sycl::erfc(x);
#else
    return ::erfc(x);
#endif
  }
};
#endif  // EIGEN_HAS_C99_MATH


/***************************************************************************
* Implementation of ndtri.                                                 *
****************************************************************************/

/* Inverse of Normal distribution function (modified for Eigen).
 *
 *
 * SYNOPSIS:
 *
 * double x, y, ndtri();
 *
 * x = ndtri( y );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the argument, x, for which the area under the
 * Gaussian probability density function (integrated from
 * minus infinity to x) is equal to y.
 *
 *
 * For small arguments 0 < y < exp(-2), the program computes
 * z = sqrt( -2.0 * log(y) );  then the approximation is
 * x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z).
 * There are two rational functions P/Q, one for 0 < y < exp(-32)
 * and the other for y up to exp(-2).  For larger arguments,
 * w = y - 0.5, and  x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)).
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain        # trials      peak         rms
 *    DEC      0.125, 1         5500       9.5e-17     2.1e-17
 *    DEC      6e-39, 0.135     3500       5.7e-17     1.3e-17
 *    IEEE     0.125, 1        20000       7.2e-16     1.3e-16
 *    IEEE     3e-308, 0.135   50000       4.6e-16     9.8e-17
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition    value returned
 * ndtri domain       x <= 0        -MAXNUM
 * ndtri domain       x >= 1         MAXNUM
 *
 */
 /*
   Cephes Math Library Release 2.2: June, 1992
   Copyright 1985, 1987, 1992 by Stephen L. Moshier
   Direct inquiries to 30 Frost Street, Cambridge, MA 02140
 */


// TODO: Add a cheaper approximation for float.


template<typename T>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T flipsign(
    const T& should_flipsign, const T& x) {
  typedef typename unpacket_traits<T>::type Scalar;
  const T sign_mask = pset1<T>(Scalar(-0.0));
  T sign_bit = pand<T>(should_flipsign, sign_mask);
  return pxor<T>(sign_bit, x);
}

template<>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double flipsign<double>(
    const double& should_flipsign, const double& x) {
  return should_flipsign == 0 ? x : -x;
}

template<>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE float flipsign<float>(
    const float& should_flipsign, const float& x) {
  return should_flipsign == 0 ? x : -x;
}

// We split this computation in to two so that in the scalar path
// only one branch is evaluated (due to our template specialization of pselect
// being an if statement.)

template <typename T, typename ScalarType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T generic_ndtri_gt_exp_neg_two(const T& b) {
  const ScalarType p0[] = {
    ScalarType(-5.99633501014107895267e1),
    ScalarType(9.80010754185999661536e1),
    ScalarType(-5.66762857469070293439e1),
    ScalarType(1.39312609387279679503e1),
    ScalarType(-1.23916583867381258016e0)
  };
  const ScalarType q0[] = {
    ScalarType(1.0),
    ScalarType(1.95448858338141759834e0),
    ScalarType(4.67627912898881538453e0),
    ScalarType(8.63602421390890590575e1),
    ScalarType(-2.25462687854119370527e2),
    ScalarType(2.00260212380060660359e2),
    ScalarType(-8.20372256168333339912e1),
    ScalarType(1.59056225126211695515e1),
    ScalarType(-1.18331621121330003142e0)
  };
  const T sqrt2pi = pset1<T>(ScalarType(2.50662827463100050242e0));
  const T half = pset1<T>(ScalarType(0.5));
  T c, c2, ndtri_gt_exp_neg_two;

  c = psub(b, half);
  c2 = pmul(c, c);
  ndtri_gt_exp_neg_two = pmadd(c, pmul(
      c2, pdiv(
          internal::ppolevl<T, 4>::run(c2, p0),
          internal::ppolevl<T, 8>::run(c2, q0))), c);
  return pmul(ndtri_gt_exp_neg_two, sqrt2pi);
}

template <typename T, typename ScalarType>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T generic_ndtri_lt_exp_neg_two(
    const T& b, const T& should_flipsign) {
  /* Approximation for interval z = sqrt(-2 log a ) between 2 and 8
   * i.e., a between exp(-2) = .135 and exp(-32) = 1.27e-14.
   */
  const ScalarType p1[] = {
    ScalarType(4.05544892305962419923e0),
    ScalarType(3.15251094599893866154e1),
    ScalarType(5.71628192246421288162e1),
    ScalarType(4.40805073893200834700e1),
    ScalarType(1.46849561928858024014e1),
    ScalarType(2.18663306850790267539e0),
    ScalarType(-1.40256079171354495875e-1),
    ScalarType(-3.50424626827848203418e-2),
    ScalarType(-8.57456785154685413611e-4)
  };
  const ScalarType q1[] = {
    ScalarType(1.0),
    ScalarType(1.57799883256466749731e1),
    ScalarType(4.53907635128879210584e1),
    ScalarType(4.13172038254672030440e1),
    ScalarType(1.50425385692907503408e1),
    ScalarType(2.50464946208309415979e0),
    ScalarType(-1.42182922854787788574e-1),
    ScalarType(-3.80806407691578277194e-2),
    ScalarType(-9.33259480895457427372e-4)
  };
  /* Approximation for interval z = sqrt(-2 log a ) between 8 and 64
   * i.e., a between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
   */
  const ScalarType p2[] = {
    ScalarType(3.23774891776946035970e0),
    ScalarType(6.91522889068984211695e0),
    ScalarType(3.93881025292474443415e0),
    ScalarType(1.33303460815807542389e0),
    ScalarType(2.01485389549179081538e-1),
    ScalarType(1.23716634817820021358e-2),
    ScalarType(3.01581553508235416007e-4),
    ScalarType(2.65806974686737550832e-6),
    ScalarType(6.23974539184983293730e-9)
  };
  const ScalarType q2[] = {
    ScalarType(1.0),
    ScalarType(6.02427039364742014255e0),
    ScalarType(3.67983563856160859403e0),
    ScalarType(1.37702099489081330271e0),
    ScalarType(2.16236993594496635890e-1),
    ScalarType(1.34204006088543189037e-2),
    ScalarType(3.28014464682127739104e-4),
    ScalarType(2.89247864745380683936e-6),
    ScalarType(6.79019408009981274425e-9)
  };
  const T eight = pset1<T>(ScalarType(8.0));
  const T one = pset1<T>(ScalarType(1));
  const T neg_two = pset1<T>(ScalarType(-2));
  T x, x0, x1, z;

  x = psqrt(pmul(neg_two, plog(b)));
  x0 = psub(x, pdiv(plog(x), x));
  z = pdiv(one, x);
  x1 = pmul(
      z, pselect(
          pcmp_lt(x, eight),
          pdiv(internal::ppolevl<T, 8>::run(z, p1),
               internal::ppolevl<T, 8>::run(z, q1)),
          pdiv(internal::ppolevl<T, 8>::run(z, p2),
               internal::ppolevl<T, 8>::run(z, q2))));
  return flipsign(should_flipsign, psub(x0, x1));
}

template <typename T, typename ScalarType>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T generic_ndtri(const T& a) {
  const T maxnum = pset1<T>(NumTraits<ScalarType>::infinity());
  const T neg_maxnum = pset1<T>(-NumTraits<ScalarType>::infinity());

  const T zero = pset1<T>(ScalarType(0));
  const T one = pset1<T>(ScalarType(1));
  // exp(-2)
  const T exp_neg_two = pset1<T>(ScalarType(0.13533528323661269189));
  T b, ndtri, should_flipsign;

  should_flipsign = pcmp_le(a, psub(one, exp_neg_two));
  b = pselect(should_flipsign, a, psub(one, a));

  ndtri = pselect(
      pcmp_lt(exp_neg_two, b),
      generic_ndtri_gt_exp_neg_two<T, ScalarType>(b),
      generic_ndtri_lt_exp_neg_two<T, ScalarType>(b, should_flipsign));

  return pselect(
      pcmp_le(a, zero), neg_maxnum,
      pselect(pcmp_le(one, a), maxnum, ndtri));
}

template <typename Scalar>
struct ndtri_retval {
  typedef Scalar type;
};

#if !EIGEN_HAS_C99_MATH

template <typename Scalar>
struct ndtri_impl {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
                        THIS_TYPE_IS_NOT_SUPPORTED);
    return Scalar(0);
  }
};

# else

template <typename Scalar>
struct ndtri_impl {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Scalar run(const Scalar x) {
    return generic_ndtri<Scalar, Scalar>(x);
  }
};

#endif  // EIGEN_HAS_C99_MATH


/**************************************************************************************************************
 * Implementation of igammac (complemented incomplete gamma integral), based on Cephes but requires C++11/C99 *
 **************************************************************************************************************/

template <typename Scalar>
struct igammac_retval {
  typedef Scalar type;
};

// NOTE: cephes_helper is also used to implement zeta
template <typename Scalar>
struct cephes_helper {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Scalar machep() { assert(false && "machep not supported for this type"); return 0.0; }
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Scalar big() { assert(false && "big not supported for this type"); return 0.0; }
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Scalar biginv() { assert(false && "biginv not supported for this type"); return 0.0; }
};

template <>
struct cephes_helper<float> {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE float machep() {
    return NumTraits<float>::epsilon() / 2;  // 1.0 - machep == 1.0
  }
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE float big() {
    // use epsneg (1.0 - epsneg == 1.0)
    return 1.0f / (NumTraits<float>::epsilon() / 2);
  }
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE float biginv() {
    // epsneg
    return machep();
  }
};

template <>
struct cephes_helper<double> {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE double machep() {
    return NumTraits<double>::epsilon() / 2;  // 1.0 - machep == 1.0
  }
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE double big() {
    return 1.0 / NumTraits<double>::epsilon();
  }
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE double biginv() {
    // inverse of eps
    return NumTraits<double>::epsilon();
  }
};

enum IgammaComputationMode { VALUE, DERIVATIVE, SAMPLE_DERIVATIVE };

template <typename Scalar>
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Scalar main_igamma_term(Scalar a, Scalar x) {
    /* Compute  x**a * exp(-x) / gamma(a)  */
    Scalar logax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
    if (logax < -numext::log(NumTraits<Scalar>::highest()) ||
        // Assuming x and a aren't Nan.
        (numext::isnan)(logax)) {
      return Scalar(0);
    }
    return numext::exp(logax);
}

template <typename Scalar, IgammaComputationMode mode>
EIGEN_DEVICE_FUNC
int igamma_num_iterations() {
  /* Returns the maximum number of internal iterations for igamma computation.
   */
  if (mode == VALUE) {
    return 2000;
  }

  if (internal::is_same<Scalar, float>::value) {
    return 200;
  } else if (internal::is_same<Scalar, double>::value) {
    return 500;
  } else {
    return 2000;
  }
}

template <typename Scalar, IgammaComputationMode mode>
struct igammac_cf_impl {
  /* Computes igamc(a, x) or derivative (depending on the mode)
   * using the continued fraction expansion of the complementary
   * incomplete Gamma function.
   *
   * Preconditions:
   *   a > 0
   *   x >= 1
   *   x >= a
   */
  EIGEN_DEVICE_FUNC
  static Scalar run(Scalar a, Scalar x) {
    const Scalar zero = 0;
    const Scalar one = 1;
    const Scalar two = 2;
    const Scalar machep = cephes_helper<Scalar>::machep();
    const Scalar big = cephes_helper<Scalar>::big();
    const Scalar biginv = cephes_helper<Scalar>::biginv();

    if ((numext::isinf)(x)) {
      return zero;
    }

    Scalar ax = main_igamma_term<Scalar>(a, x);
    // This is independent of mode. If this value is zero,
    // then the function value is zero. If the function value is zero,
    // then we are in a neighborhood where the function value evalutes to zero,
    // so the derivative is zero.
    if (ax == zero) {
      return zero;
    }

    // continued fraction
    Scalar y = one - a;
    Scalar z = x + y + one;
    Scalar c = zero;
    Scalar pkm2 = one;
    Scalar qkm2 = x;
    Scalar pkm1 = x + one;
    Scalar qkm1 = z * x;
    Scalar ans = pkm1 / qkm1;

    Scalar dpkm2_da = zero;
    Scalar dqkm2_da = zero;
    Scalar dpkm1_da = zero;
    Scalar dqkm1_da = -x;
    Scalar dans_da = (dpkm1_da - ans * dqkm1_da) / qkm1;

    for (int i = 0; i < igamma_num_iterations<Scalar, mode>(); i++) {
      c += one;
      y += one;
      z += two;

      Scalar yc = y * c;
      Scalar pk = pkm1 * z - pkm2 * yc;
      Scalar qk = qkm1 * z - qkm2 * yc;

      Scalar dpk_da = dpkm1_da * z - pkm1 - dpkm2_da * yc + pkm2 * c;
      Scalar dqk_da = dqkm1_da * z - qkm1 - dqkm2_da * yc + qkm2 * c;

      if (qk != zero) {
        Scalar ans_prev = ans;
        ans = pk / qk;

        Scalar dans_da_prev = dans_da;
        dans_da = (dpk_da - ans * dqk_da) / qk;

        if (mode == VALUE) {
          if (numext::abs(ans_prev - ans) <= machep * numext::abs(ans)) {
            break;
          }
        } else {
          if (numext::abs(dans_da - dans_da_prev) <= machep) {
            break;
          }
        }
      }

      pkm2 = pkm1;
      pkm1 = pk;
      qkm2 = qkm1;
      qkm1 = qk;

      dpkm2_da = dpkm1_da;
      dpkm1_da = dpk_da;
      dqkm2_da = dqkm1_da;
      dqkm1_da = dqk_da;

      if (numext::abs(pk) > big) {
        pkm2 *= biginv;
        pkm1 *= biginv;
        qkm2 *= biginv;
        qkm1 *= biginv;

        dpkm2_da *= biginv;
        dpkm1_da *= biginv;
        dqkm2_da *= biginv;
        dqkm1_da *= biginv;
      }
    }

    /* Compute  x**a * exp(-x) / gamma(a)  */
    Scalar dlogax_da = numext::log(x) - digamma_impl<Scalar>::run(a);
    Scalar dax_da = ax * dlogax_da;

    switch (mode) {
      case VALUE:
        return ans * ax;
      case DERIVATIVE:
        return ans * dax_da + dans_da * ax;
      case SAMPLE_DERIVATIVE:
      default: // this is needed to suppress clang warning
        return -(dans_da + ans * dlogax_da) * x;
    }
  }
};

template <typename Scalar, IgammaComputationMode mode>
struct igamma_series_impl {
  /* Computes igam(a, x) or its derivative (depending on the mode)
   * using the series expansion of the incomplete Gamma function.
   *
   * Preconditions:
   *   x > 0
   *   a > 0
   *   !(x > 1 && x > a)
   */
  EIGEN_DEVICE_FUNC
  static Scalar run(Scalar a, Scalar x) {
    const Scalar zero = 0;
    const Scalar one = 1;
    const Scalar machep = cephes_helper<Scalar>::machep();

    Scalar ax = main_igamma_term<Scalar>(a, x);

    // This is independent of mode. If this value is zero,
    // then the function value is zero. If the function value is zero,
    // then we are in a neighborhood where the function value evalutes to zero,
    // so the derivative is zero.
    if (ax == zero) {
      return zero;
    }

    ax /= a;

    /* power series */
    Scalar r = a;
    Scalar c = one;
    Scalar ans = one;

    Scalar dc_da = zero;
    Scalar dans_da = zero;

    for (int i = 0; i < igamma_num_iterations<Scalar, mode>(); i++) {
      r += one;
      Scalar term = x / r;
      Scalar dterm_da = -x / (r * r);
      dc_da = term * dc_da + dterm_da * c;
      dans_da += dc_da;
      c *= term;
      ans += c;

      if (mode == VALUE) {
        if (c <= machep * ans) {
          break;
        }
      } else {
        if (numext::abs(dc_da) <= machep * numext::abs(dans_da)) {
          break;
        }
      }
    }

    Scalar dlogax_da = numext::log(x) - digamma_impl<Scalar>::run(a + one);
    Scalar dax_da = ax * dlogax_da;

    switch (mode) {
      case VALUE:
        return ans * ax;
      case DERIVATIVE:
        return ans * dax_da + dans_da * ax;
      case SAMPLE_DERIVATIVE:
      default: // this is needed to suppress clang warning
        return -(dans_da + ans * dlogax_da) * x / a;
    }
  }
};

#if !EIGEN_HAS_C99_MATH

template <typename Scalar>
struct igammac_impl {
  EIGEN_DEVICE_FUNC
  static Scalar run(Scalar a, Scalar x) {
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
                        THIS_TYPE_IS_NOT_SUPPORTED);
    return Scalar(0);
  }
};

#else

template <typename Scalar>
struct igammac_impl {
  EIGEN_DEVICE_FUNC
  static Scalar run(Scalar a, Scalar x) {
    /*  igamc()
     *
     *	Incomplete gamma integral (modified for Eigen)
     *
     *
     *
     * SYNOPSIS:
     *
     * double a, x, y, igamc();
     *
     * y = igamc( a, x );
     *
     * DESCRIPTION:
     *
     * The function is defined by
     *
     *
     *  igamc(a,x)   =   1 - igam(a,x)
     *
     *                            inf.
     *                              -
     *                     1       | |  -t  a-1
     *               =   -----     |   e   t   dt.
     *                    -      | |
     *                   | (a)    -
     *                             x
     *
     *
     * In this implementation both arguments must be positive.
     * The integral is evaluated by either a power series or
     * continued fraction expansion, depending on the relative
     * values of a and x.
     *
     * ACCURACY (float):
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0,30        30000       7.8e-6      5.9e-7
     *
     *
     * ACCURACY (double):
     *
     * Tested at random a, x.
     *                a         x                      Relative error:
     * arithmetic   domain   domain     # trials      peak         rms
     *    IEEE     0.5,100   0,100      200000       1.9e-14     1.7e-15
     *    IEEE     0.01,0.5  0,100      200000       1.4e-13     1.6e-15
     *
     */
    /*
      Cephes Math Library Release 2.2: June, 1992
      Copyright 1985, 1987, 1992 by Stephen L. Moshier
      Direct inquiries to 30 Frost Street, Cambridge, MA 02140
    */
    const Scalar zero = 0;
    const Scalar one = 1;
    const Scalar nan = NumTraits<Scalar>::quiet_NaN();

    if ((x < zero) || (a <= zero)) {
      // domain error
      return nan;
    }

    if ((numext::isnan)(a) || (numext::isnan)(x)) {  // propagate nans
      return nan;
    }

    if ((x < one) || (x < a)) {
      return (one - igamma_series_impl<Scalar, VALUE>::run(a, x));
    }

    return igammac_cf_impl<Scalar, VALUE>::run(a, x);
  }
};

#endif  // EIGEN_HAS_C99_MATH

/************************************************************************************************
 * Implementation of igamma (incomplete gamma integral), based on Cephes but requires C++11/C99 *
 ************************************************************************************************/

#if !EIGEN_HAS_C99_MATH

template <typename Scalar, IgammaComputationMode mode>
struct igamma_generic_impl {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) {
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
                        THIS_TYPE_IS_NOT_SUPPORTED);
    return Scalar(0);
  }
};

#else

template <typename Scalar, IgammaComputationMode mode>
struct igamma_generic_impl {
  EIGEN_DEVICE_FUNC
  static Scalar run(Scalar a, Scalar x) {
    /* Depending on the mode, returns
     * - VALUE: incomplete Gamma function igamma(a, x)
     * - DERIVATIVE: derivative of incomplete Gamma function d/da igamma(a, x)
     * - SAMPLE_DERIVATIVE: implicit derivative of a Gamma random variable
     * x ~ Gamma(x | a, 1), dx/da = -1 / Gamma(x | a, 1) * d igamma(a, x) / dx
     *
     * Derivatives are implemented by forward-mode differentiation.
     */
    const Scalar zero = 0;
    const Scalar one = 1;
    const Scalar nan = NumTraits<Scalar>::quiet_NaN();

    if (x == zero) return zero;

    if ((x < zero) || (a <= zero)) {  // domain error
      return nan;
    }

    if ((numext::isnan)(a) || (numext::isnan)(x)) {  // propagate nans
      return nan;
    }

    if ((x > one) && (x > a)) {
      Scalar ret = igammac_cf_impl<Scalar, mode>::run(a, x);
      if (mode == VALUE) {
        return one - ret;
      } else {
        return -ret;
      }
    }

    return igamma_series_impl<Scalar, mode>::run(a, x);
  }
};

#endif  // EIGEN_HAS_C99_MATH

template <typename Scalar>
struct igamma_retval {
  typedef Scalar type;
};

template <typename Scalar>
struct igamma_impl : igamma_generic_impl<Scalar, VALUE> {
  /* igam()
   * Incomplete gamma integral.
   *
   * The CDF of Gamma(a, 1) random variable at the point x.
   *
   * Accuracy estimation. For each a in [10^-2, 10^-1...10^3] we sample
   * 50 Gamma random variables x ~ Gamma(x | a, 1), a total of 300 points.
   * The ground truth is computed by mpmath. Mean absolute error:
   * float: 1.26713e-05
   * double: 2.33606e-12
   *
   * Cephes documentation below.
   *
   * SYNOPSIS:
   *
   * double a, x, y, igam();
   *
   * y = igam( a, x );
   *
   * DESCRIPTION:
   *
   * The function is defined by
   *
   *                           x
   *                            -
   *                   1       | |  -t  a-1
   *  igam(a,x)  =   -----     |   e   t   dt.
   *                  -      | |
   *                 | (a)    -
   *                           0
   *
   *
   * In this implementation both arguments must be positive.
   * The integral is evaluated by either a power series or
   * continued fraction expansion, depending on the relative
   * values of a and x.
   *
   * ACCURACY (double):
   *
   *                      Relative error:
   * arithmetic   domain     # trials      peak         rms
   *    IEEE      0,30       200000       3.6e-14     2.9e-15
   *    IEEE      0,100      300000       9.9e-14     1.5e-14
   *
   *
   * ACCURACY (float):
   *
   *                      Relative error:
   * arithmetic   domain     # trials      peak         rms
   *    IEEE      0,30        20000       7.8e-6      5.9e-7
   *
   */
  /*
    Cephes Math Library Release 2.2: June, 1992
    Copyright 1985, 1987, 1992 by Stephen L. Moshier
    Direct inquiries to 30 Frost Street, Cambridge, MA 02140
  */

  /* left tail of incomplete gamma function:
   *
   *          inf.      k
   *   a  -x   -       x
   *  x  e     >   ----------
   *           -     -
   *          k=0   | (a+k+1)
   *
   */
};

template <typename Scalar>
struct igamma_der_a_retval : igamma_retval<Scalar> {};

template <typename Scalar>
struct igamma_der_a_impl : igamma_generic_impl<Scalar, DERIVATIVE> {
  /* Derivative of the incomplete Gamma function with respect to a.
   *
   * Computes d/da igamma(a, x) by forward differentiation of the igamma code.
   *
   * Accuracy estimation. For each a in [10^-2, 10^-1...10^3] we sample
   * 50 Gamma random variables x ~ Gamma(x | a, 1), a total of 300 points.
   * The ground truth is computed by mpmath. Mean absolute error:
   * float: 6.17992e-07
   * double: 4.60453e-12
   *
   * Reference:
   * R. Moore. "Algorithm AS 187: Derivatives of the incomplete gamma
   * integral". Journal of the Royal Statistical Society. 1982
   */
};

template <typename Scalar>
struct gamma_sample_der_alpha_retval : igamma_retval<Scalar> {};

template <typename Scalar>
struct gamma_sample_der_alpha_impl
    : igamma_generic_impl<Scalar, SAMPLE_DERIVATIVE> {
  /* Derivative of a Gamma random variable sample with respect to alpha.
   *
   * Consider a sample of a Gamma random variable with the concentration
   * parameter alpha: sample ~ Gamma(alpha, 1). The reparameterization
   * derivative that we want to compute is dsample / dalpha =
   * d igammainv(alpha, u) / dalpha, where u = igamma(alpha, sample).
   * However, this formula is numerically unstable and expensive, so instead
   * we use implicit differentiation:
   *
   * igamma(alpha, sample) = u, where u ~ Uniform(0, 1).
   * Apply d / dalpha to both sides:
   * d igamma(alpha, sample) / dalpha
   *     + d igamma(alpha, sample) / dsample * dsample/dalpha  = 0
   * d igamma(alpha, sample) / dalpha
   *     + Gamma(sample | alpha, 1) dsample / dalpha = 0
   * dsample/dalpha = - (d igamma(alpha, sample) / dalpha)
   *                   / Gamma(sample | alpha, 1)
   *
   * Here Gamma(sample | alpha, 1) is the PDF of the Gamma distribution
   * (note that the derivative of the CDF w.r.t. sample is the PDF).
   * See the reference below for more details.
   *
   * The derivative of igamma(alpha, sample) is computed by forward
   * differentiation of the igamma code. Division by the Gamma PDF is performed
   * in the same code, increasing the accuracy and speed due to cancellation
   * of some terms.
   *
   * Accuracy estimation. For each alpha in [10^-2, 10^-1...10^3] we sample
   * 50 Gamma random variables sample ~ Gamma(sample | alpha, 1), a total of 300
   * points. The ground truth is computed by mpmath. Mean absolute error:
   * float: 2.1686e-06
   * double: 1.4774e-12
   *
   * Reference:
   * M. Figurnov, S. Mohamed, A. Mnih "Implicit Reparameterization Gradients".
   * 2018
   */
};

/*****************************************************************************
 * Implementation of Riemann zeta function of two arguments, based on Cephes *
 *****************************************************************************/

template <typename Scalar>
struct zeta_retval {
    typedef Scalar type;
};

template <typename Scalar>
struct zeta_impl_series {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Scalar run(const Scalar) {
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
                        THIS_TYPE_IS_NOT_SUPPORTED);
    return Scalar(0);
  }
};

template <>
struct zeta_impl_series<float> {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE bool run(float& a, float& b, float& s, const float x, const float machep) {
    int i = 0;
    while(i < 9)
    {
        i += 1;
        a += 1.0f;
        b = numext::pow( a, -x );
        s += b;
        if( numext::abs(b/s) < machep )
            return true;
    }

    //Return whether we are done
    return false;
  }
};

template <>
struct zeta_impl_series<double> {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE bool run(double& a, double& b, double& s, const double x, const double machep) {
    int i = 0;
    while( (i < 9) || (a <= 9.0) )
    {
        i += 1;
        a += 1.0;
        b = numext::pow( a, -x );
        s += b;
        if( numext::abs(b/s) < machep )
            return true;
    }

    //Return whether we are done
    return false;
  }
};

template <typename Scalar>
struct zeta_impl {
    EIGEN_DEVICE_FUNC
    static Scalar run(Scalar x, Scalar q) {
        /*							zeta.c
         *
         *	Riemann zeta function of two arguments
         *
         *
         *
         * SYNOPSIS:
         *
         * double x, q, y, zeta();
         *
         * y = zeta( x, q );
         *
         *
         *
         * DESCRIPTION:
         *
         *
         *
         *                 inf.
         *                  -        -x
         *   zeta(x,q)  =   >   (k+q)
         *                  -
         *                 k=0
         *
         * where x > 1 and q is not a negative integer or zero.
         * The Euler-Maclaurin summation formula is used to obtain
         * the expansion
         *
         *                n
         *                -       -x
         * zeta(x,q)  =   >  (k+q)
         *                -
         *               k=1
         *
         *           1-x                 inf.  B   x(x+1)...(x+2j)
         *      (n+q)           1         -     2j
         *  +  ---------  -  -------  +   >    --------------------
         *        x-1              x      -                   x+2j+1
         *                   2(n+q)      j=1       (2j)! (n+q)
         *
         * where the B2j are Bernoulli numbers.  Note that (see zetac.c)
         * zeta(x,1) = zetac(x) + 1.
         *
         *
         *
         * ACCURACY:
         *
         * Relative error for single precision:
         * arithmetic   domain     # trials      peak         rms
         *    IEEE      0,25        10000       6.9e-7      1.0e-7
         *
         * Large arguments may produce underflow in powf(), in which
         * case the results are inaccurate.
         *
         * REFERENCE:
         *
         * Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
         * Series, and Products, p. 1073; Academic Press, 1980.
         *
         */

        int i;
        Scalar p, r, a, b, k, s, t, w;

        const Scalar A[] = {
            Scalar(12.0),
            Scalar(-720.0),
            Scalar(30240.0),
            Scalar(-1209600.0),
            Scalar(47900160.0),
            Scalar(-1.8924375803183791606e9), /*1.307674368e12/691*/
            Scalar(7.47242496e10),
            Scalar(-2.950130727918164224e12), /*1.067062284288e16/3617*/
            Scalar(1.1646782814350067249e14), /*5.109094217170944e18/43867*/
            Scalar(-4.5979787224074726105e15), /*8.028576626982912e20/174611*/
            Scalar(1.8152105401943546773e17), /*1.5511210043330985984e23/854513*/
            Scalar(-7.1661652561756670113e18) /*1.6938241367317436694528e27/236364091*/
            };

        const Scalar maxnum = NumTraits<Scalar>::infinity();
        const Scalar zero = 0.0, half = 0.5, one = 1.0;
        const Scalar machep = cephes_helper<Scalar>::machep();
        const Scalar nan = NumTraits<Scalar>::quiet_NaN();

        if( x == one )
            return maxnum;

        if( x < one )
        {
            return nan;
        }

        if( q <= zero )
        {
            if(q == numext::floor(q))
            {
                if (x == numext::floor(x) && long(x) % 2 == 0) {
                    return maxnum;
                }
                else {
                    return nan;
                }
            }
            p = x;
            r = numext::floor(p);
            if (p != r)
                return nan;
        }

        /* Permit negative q but continue sum until n+q > +9 .
         * This case should be handled by a reflection formula.
         * If q<0 and x is an integer, there is a relation to
         * the polygamma function.
         */
        s = numext::pow( q, -x );
        a = q;
        b = zero;
        // Run the summation in a helper function that is specific to the floating precision
        if (zeta_impl_series<Scalar>::run(a, b, s, x, machep)) {
            return s;
        }

        w = a;
        s += b*w/(x-one);
        s -= half * b;
        a = one;
        k = zero;
        for( i=0; i<12; i++ )
        {
            a *= x + k;
            b /= w;
            t = a*b/A[i];
            s = s + t;
            t = numext::abs(t/s);
            if( t < machep ) {
              break;
            }
            k += one;
            a *= x + k;
            b /= w;
            k += one;
        }
        return s;
  }
};

/****************************************************************************
 * Implementation of polygamma function, requires C++11/C99                 *
 ****************************************************************************/

template <typename Scalar>
struct polygamma_retval {
    typedef Scalar type;
};

#if !EIGEN_HAS_C99_MATH

template <typename Scalar>
struct polygamma_impl {
    EIGEN_DEVICE_FUNC
    static EIGEN_STRONG_INLINE Scalar run(Scalar n, Scalar x) {
        EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
                            THIS_TYPE_IS_NOT_SUPPORTED);
        return Scalar(0);
    }
};

#else

template <typename Scalar>
struct polygamma_impl {
    EIGEN_DEVICE_FUNC
    static Scalar run(Scalar n, Scalar x) {
        Scalar zero = 0.0, one = 1.0;
        Scalar nplus = n + one;
        const Scalar nan = NumTraits<Scalar>::quiet_NaN();

        // Check that n is a non-negative integer
        if (numext::floor(n) != n || n < zero) {
            return nan;
        }
        // Just return the digamma function for n = 0
        else if (n == zero) {
            return digamma_impl<Scalar>::run(x);
        }
        // Use the same implementation as scipy
        else {
            Scalar factorial = numext::exp(lgamma_impl<Scalar>::run(nplus));
            return numext::pow(-one, nplus) * factorial * zeta_impl<Scalar>::run(nplus, x);
        }
  }
};

#endif  // EIGEN_HAS_C99_MATH

/************************************************************************************************
 * Implementation of betainc (incomplete beta integral), based on Cephes but requires C++11/C99 *
 ************************************************************************************************/

template <typename Scalar>
struct betainc_retval {
  typedef Scalar type;
};

#if !EIGEN_HAS_C99_MATH

template <typename Scalar>
struct betainc_impl {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x) {
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
                        THIS_TYPE_IS_NOT_SUPPORTED);
    return Scalar(0);
  }
};

#else

template <typename Scalar>
struct betainc_impl {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Scalar run(Scalar, Scalar, Scalar) {
    /*	betaincf.c
     *
     *	Incomplete beta integral
     *
     *
     * SYNOPSIS:
     *
     * float a, b, x, y, betaincf();
     *
     * y = betaincf( a, b, x );
     *
     *
     * DESCRIPTION:
     *
     * Returns incomplete beta integral of the arguments, evaluated
     * from zero to x.  The function is defined as
     *
     *                  x
     *     -            -
     *    | (a+b)      | |  a-1     b-1
     *  -----------    |   t   (1-t)   dt.
     *   -     -     | |
     *  | (a) | (b)   -
     *                 0
     *
     * The domain of definition is 0 <= x <= 1.  In this
     * implementation a and b are restricted to positive values.
     * The integral from x to 1 may be obtained by the symmetry
     * relation
     *
     *    1 - betainc( a, b, x )  =  betainc( b, a, 1-x ).
     *
     * The integral is evaluated by a continued fraction expansion.
     * If a < 1, the function calls itself recursively after a
     * transformation to increase a to a+1.
     *
     * ACCURACY (float):
     *
     * Tested at random points (a,b,x) with a and b in the indicated
     * interval and x between 0 and 1.
     *
     * arithmetic   domain     # trials      peak         rms
     * Relative error:
     *    IEEE       0,30       10000       3.7e-5      5.1e-6
     *    IEEE       0,100      10000       1.7e-4      2.5e-5
     * The useful domain for relative error is limited by underflow
     * of the single precision exponential function.
     * Absolute error:
     *    IEEE       0,30      100000       2.2e-5      9.6e-7
     *    IEEE       0,100      10000       6.5e-5      3.7e-6
     *
     * Larger errors may occur for extreme ratios of a and b.
     *
     * ACCURACY (double):
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0,5         10000       6.9e-15     4.5e-16
     *    IEEE      0,85       250000       2.2e-13     1.7e-14
     *    IEEE      0,1000      30000       5.3e-12     6.3e-13
     *    IEEE      0,10000    250000       9.3e-11     7.1e-12
     *    IEEE      0,100000    10000       8.7e-10     4.8e-11
     * Outputs smaller than the IEEE gradual underflow threshold
     * were excluded from these statistics.
     *
     * ERROR MESSAGES:
     *   message         condition      value returned
     * incbet domain      x<0, x>1          nan
     * incbet underflow                     nan
     */

    EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
                        THIS_TYPE_IS_NOT_SUPPORTED);
    return Scalar(0);
  }
};

/* Continued fraction expansion #1 for incomplete beta integral (small_branch = True)
 * Continued fraction expansion #2 for incomplete beta integral (small_branch = False)
 */
template <typename Scalar>
struct incbeta_cfe {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar b, Scalar x, bool small_branch) {
    EIGEN_STATIC_ASSERT((internal::is_same<Scalar, float>::value ||
                         internal::is_same<Scalar, double>::value),
                        THIS_TYPE_IS_NOT_SUPPORTED);
    const Scalar big = cephes_helper<Scalar>::big();
    const Scalar machep = cephes_helper<Scalar>::machep();
    const Scalar biginv = cephes_helper<Scalar>::biginv();

    const Scalar zero = 0;
    const Scalar one = 1;
    const Scalar two = 2;

    Scalar xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
    Scalar k1, k2, k3, k4, k5, k6, k7, k8, k26update;
    Scalar ans;
    int n;

    const int num_iters = (internal::is_same<Scalar, float>::value) ? 100 : 300;
    const Scalar thresh =
        (internal::is_same<Scalar, float>::value) ? machep : Scalar(3) * machep;
    Scalar r = (internal::is_same<Scalar, float>::value) ? zero : one;

    if (small_branch) {
      k1 = a;
      k2 = a + b;
      k3 = a;
      k4 = a + one;
      k5 = one;
      k6 = b - one;
      k7 = k4;
      k8 = a + two;
      k26update = one;
    } else {
      k1 = a;
      k2 = b - one;
      k3 = a;
      k4 = a + one;
      k5 = one;
      k6 = a + b;
      k7 = a + one;
      k8 = a + two;
      k26update = -one;
      x = x / (one - x);
    }

    pkm2 = zero;
    qkm2 = one;
    pkm1 = one;
    qkm1 = one;
    ans = one;
    n = 0;

    do {
      xk = -(x * k1 * k2) / (k3 * k4);
      pk = pkm1 + pkm2 * xk;
      qk = qkm1 + qkm2 * xk;
      pkm2 = pkm1;
      pkm1 = pk;
      qkm2 = qkm1;
      qkm1 = qk;

      xk = (x * k5 * k6) / (k7 * k8);
      pk = pkm1 + pkm2 * xk;
      qk = qkm1 + qkm2 * xk;
      pkm2 = pkm1;
      pkm1 = pk;
      qkm2 = qkm1;
      qkm1 = qk;

      if (qk != zero) {
        r = pk / qk;
        if (numext::abs(ans - r) < numext::abs(r) * thresh) {
          return r;
        }
        ans = r;
      }

      k1 += one;
      k2 += k26update;
      k3 += two;
      k4 += two;
      k5 += one;
      k6 -= k26update;
      k7 += two;
      k8 += two;

      if ((numext::abs(qk) + numext::abs(pk)) > big) {
        pkm2 *= biginv;
        pkm1 *= biginv;
        qkm2 *= biginv;
        qkm1 *= biginv;
      }
      if ((numext::abs(qk) < biginv) || (numext::abs(pk) < biginv)) {
        pkm2 *= big;
        pkm1 *= big;
        qkm2 *= big;
        qkm1 *= big;
      }
    } while (++n < num_iters);

    return ans;
  }
};

/* Helper functions depending on the Scalar type */
template <typename Scalar>
struct betainc_helper {};

template <>
struct betainc_helper<float> {
  /* Core implementation, assumes a large (> 1.0) */
  EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE float incbsa(float aa, float bb,
                                                            float xx) {
    float ans, a, b, t, x, onemx;
    bool reversed_a_b = false;

    onemx = 1.0f - xx;

    /* see if x is greater than the mean */
    if (xx > (aa / (aa + bb))) {
      reversed_a_b = true;
      a = bb;
      b = aa;
      t = xx;
      x = onemx;
    } else {
      a = aa;
      b = bb;
      t = onemx;
      x = xx;
    }

    /* Choose expansion for optimal convergence */
    if (b > 10.0f) {
      if (numext::abs(b * x / a) < 0.3f) {
        t = betainc_helper<float>::incbps(a, b, x);
        if (reversed_a_b) t = 1.0f - t;
        return t;
      }
    }

    ans = x * (a + b - 2.0f) / (a - 1.0f);
    if (ans < 1.0f) {
      ans = incbeta_cfe<float>::run(a, b, x, true /* small_branch */);
      t = b * numext::log(t);
    } else {
      ans = incbeta_cfe<float>::run(a, b, x, false /* small_branch */);
      t = (b - 1.0f) * numext::log(t);
    }

    t += a * numext::log(x) + lgamma_impl<float>::run(a + b) -
         lgamma_impl<float>::run(a) - lgamma_impl<float>::run(b);
    t += numext::log(ans / a);
    t = numext::exp(t);

    if (reversed_a_b) t = 1.0f - t;
    return t;
  }

  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE float incbps(float a, float b, float x) {
    float t, u, y, s;
    const float machep = cephes_helper<float>::machep();

    y = a * numext::log(x) + (b - 1.0f) * numext::log1p(-x) - numext::log(a);
    y -= lgamma_impl<float>::run(a) + lgamma_impl<float>::run(b);
    y += lgamma_impl<float>::run(a + b);

    t = x / (1.0f - x);
    s = 0.0f;
    u = 1.0f;
    do {
      b -= 1.0f;
      if (b == 0.0f) {
        break;
      }
      a += 1.0f;
      u *= t * b / a;
      s += u;
    } while (numext::abs(u) > machep);

    return numext::exp(y) * (1.0f + s);
  }
};

template <>
struct betainc_impl<float> {
  EIGEN_DEVICE_FUNC
  static float run(float a, float b, float x) {
    const float nan = NumTraits<float>::quiet_NaN();
    float ans, t;

    if (a <= 0.0f) return nan;
    if (b <= 0.0f) return nan;
    if ((x <= 0.0f) || (x >= 1.0f)) {
      if (x == 0.0f) return 0.0f;
      if (x == 1.0f) return 1.0f;
      // mtherr("betaincf", DOMAIN);
      return nan;
    }

    /* transformation for small aa */
    if (a <= 1.0f) {
      ans = betainc_helper<float>::incbsa(a + 1.0f, b, x);
      t = a * numext::log(x) + b * numext::log1p(-x) +
          lgamma_impl<float>::run(a + b) - lgamma_impl<float>::run(a + 1.0f) -
          lgamma_impl<float>::run(b);
      return (ans + numext::exp(t));
    } else {
      return betainc_helper<float>::incbsa(a, b, x);
    }
  }
};

template <>
struct betainc_helper<double> {
  EIGEN_DEVICE_FUNC
  static EIGEN_STRONG_INLINE double incbps(double a, double b, double x) {
    const double machep = cephes_helper<double>::machep();

    double s, t, u, v, n, t1, z, ai;

    ai = 1.0 / a;
    u = (1.0 - b) * x;
    v = u / (a + 1.0);
    t1 = v;
    t = u;
    n = 2.0;
    s = 0.0;
    z = machep * ai;
    while (numext::abs(v) > z) {
      u = (n - b) * x / n;
      t *= u;
      v = t / (a + n);
      s += v;
      n += 1.0;
    }
    s += t1;
    s += ai;

    u = a * numext::log(x);
    // TODO: gamma() is not directly implemented in Eigen.
    /*
    if ((a + b) < maxgam && numext::abs(u) < maxlog) {
      t = gamma(a + b) / (gamma(a) * gamma(b));
      s = s * t * pow(x, a);
    }
    */
    t = lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
        lgamma_impl<double>::run(b) + u + numext::log(s);
    return s = numext::exp(t);
  }
};

template <>
struct betainc_impl<double> {
  EIGEN_DEVICE_FUNC
  static double run(double aa, double bb, double xx) {
    const double nan = NumTraits<double>::quiet_NaN();
    const double machep = cephes_helper<double>::machep();
    // const double maxgam = 171.624376956302725;

    double a, b, t, x, xc, w, y;
    bool reversed_a_b = false;

    if (aa <= 0.0 || bb <= 0.0) {
      return nan;  // goto domerr;
    }

    if ((xx <= 0.0) || (xx >= 1.0)) {
      if (xx == 0.0) return (0.0);
      if (xx == 1.0) return (1.0);
      // mtherr("incbet", DOMAIN);
      return nan;
    }

    if ((bb * xx) <= 1.0 && xx <= 0.95) {
      return betainc_helper<double>::incbps(aa, bb, xx);
    }

    w = 1.0 - xx;

    /* Reverse a and b if x is greater than the mean. */
    if (xx > (aa / (aa + bb))) {
      reversed_a_b = true;
      a = bb;
      b = aa;
      xc = xx;
      x = w;
    } else {
      a = aa;
      b = bb;
      xc = w;
      x = xx;
    }

    if (reversed_a_b && (b * x) <= 1.0 && x <= 0.95) {
      t = betainc_helper<double>::incbps(a, b, x);
      if (t <= machep) {
        t = 1.0 - machep;
      } else {
        t = 1.0 - t;
      }
      return t;
    }

    /* Choose expansion for better convergence. */
    y = x * (a + b - 2.0) - (a - 1.0);
    if (y < 0.0) {
      w = incbeta_cfe<double>::run(a, b, x, true /* small_branch */);
    } else {
      w = incbeta_cfe<double>::run(a, b, x, false /* small_branch */) / xc;
    }

    /* Multiply w by the factor
         a      b   _             _     _
        x  (1-x)   | (a+b) / ( a | (a) | (b) ) .   */

    y = a * numext::log(x);
    t = b * numext::log(xc);
    // TODO: gamma is not directly implemented in Eigen.
    /*
    if ((a + b) < maxgam && numext::abs(y) < maxlog && numext::abs(t) < maxlog)
    {
      t = pow(xc, b);
      t *= pow(x, a);
      t /= a;
      t *= w;
      t *= gamma(a + b) / (gamma(a) * gamma(b));
    } else {
    */
    /* Resort to logarithms.  */
    y += t + lgamma_impl<double>::run(a + b) - lgamma_impl<double>::run(a) -
         lgamma_impl<double>::run(b);
    y += numext::log(w / a);
    t = numext::exp(y);

    /* } */
    // done:

    if (reversed_a_b) {
      if (t <= machep) {
        t = 1.0 - machep;
      } else {
        t = 1.0 - t;
      }
    }
    return t;
  }
};

#endif  // EIGEN_HAS_C99_MATH

}  // end namespace internal

namespace numext {

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(lgamma, Scalar)
    lgamma(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(lgamma, Scalar)::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(digamma, Scalar)
    digamma(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(digamma, Scalar)::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(zeta, Scalar)
zeta(const Scalar& x, const Scalar& q) {
    return EIGEN_MATHFUNC_IMPL(zeta, Scalar)::run(x, q);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(polygamma, Scalar)
polygamma(const Scalar& n, const Scalar& x) {
    return EIGEN_MATHFUNC_IMPL(polygamma, Scalar)::run(n, x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erf, Scalar)
    erf(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(erf, Scalar)::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(erfc, Scalar)
    erfc(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(erfc, Scalar)::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(ndtri, Scalar)
    ndtri(const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(ndtri, Scalar)::run(x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
    igamma(const Scalar& a, const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(igamma, Scalar)::run(a, x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma_der_a, Scalar)
    igamma_der_a(const Scalar& a, const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(igamma_der_a, Scalar)::run(a, x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(gamma_sample_der_alpha, Scalar)
    gamma_sample_der_alpha(const Scalar& a, const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(gamma_sample_der_alpha, Scalar)::run(a, x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
    igammac(const Scalar& a, const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);
}

template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(betainc, Scalar)
    betainc(const Scalar& a, const Scalar& b, const Scalar& x) {
  return EIGEN_MATHFUNC_IMPL(betainc, Scalar)::run(a, b, x);
}

}  // end namespace numext
}  // end namespace Eigen

#endif  // EIGEN_SPECIAL_FUNCTIONS_H