1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
|
// SPDX-License-Identifier: Apache-2.0
//
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------
//! \addtogroup auxlib
//! @{
//! low-level interface functions for accessing LAPACK
class auxlib
{
public:
//
// inv
template<typename eT>
inline static bool inv(Mat<eT>& A);
template<typename eT>
inline static bool inv(Mat<eT>& out, const Mat<eT>& X);
template<typename eT>
inline static bool inv_rcond(Mat<eT>& A, typename get_pod_type<eT>::result& out_rcond);
template<typename eT>
inline static bool inv_tr(Mat<eT>& A, const uword layout);
template<typename eT>
inline static bool inv_tr_rcond(Mat<eT>& A, typename get_pod_type<eT>::result& out_rcond, const uword layout);
template<typename eT>
inline static bool inv_sympd(Mat<eT>& A, bool& out_sympd_state);
template<typename eT>
inline static bool inv_sympd(Mat<eT>& out, const Mat<eT>& X);
template<typename eT>
inline static bool inv_sympd_rcond(Mat<eT>& A, bool& out_sympd_state, eT& out_rcond);
template<typename T>
inline static bool inv_sympd_rcond(Mat< std::complex<T> >& A, bool& out_sympd_state, T& out_rcond);
//
// det and log_det
template<typename eT>
inline static bool det(eT& out_val, Mat<eT>& A);
template<typename eT>
inline static bool log_det(eT& out_val, typename get_pod_type<eT>::result& out_sign, Mat<eT>& A);
template<typename eT>
inline static bool log_det_sympd(typename get_pod_type<eT>::result& out_val, Mat<eT>& A);
//
// lu
template<typename eT, typename T1>
inline static bool lu(Mat<eT>& L, Mat<eT>& U, podarray<blas_int>& ipiv, const Base<eT,T1>& X);
template<typename eT, typename T1>
inline static bool lu(Mat<eT>& L, Mat<eT>& U, Mat<eT>& P, const Base<eT,T1>& X);
template<typename eT, typename T1>
inline static bool lu(Mat<eT>& L, Mat<eT>& U, const Base<eT,T1>& X);
//
// eig_gen
template<typename T1>
inline static bool eig_gen(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& vecs, const bool vecs_on, const Base<typename T1::pod_type,T1>& expr);
template<typename T1>
inline static bool eig_gen(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& vecs, const bool vecs_on, const Base< std::complex<typename T1::pod_type>, T1 >& expr);
//
// eig_gen_balance
template<typename T1>
inline static bool eig_gen_balance(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& vecs, const bool vecs_on, const Base<typename T1::pod_type,T1>& expr);
template<typename T1>
inline static bool eig_gen_balance(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& vecs, const bool vecs_on, const Base< std::complex<typename T1::pod_type>, T1 >& expr);
//
// eig_gen_twosided
template<typename T1>
inline static bool eig_gen_twosided(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& lvecs, Mat< std::complex<typename T1::pod_type> >& rvecs, const Base<typename T1::pod_type,T1>& expr);
template<typename T1>
inline static bool eig_gen_twosided(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& lvecs, Mat< std::complex<typename T1::pod_type> >& rvecs, const Base< std::complex<typename T1::pod_type>, T1 >& expr);
//
// eig_gen_twosided_balance
template<typename T1>
inline static bool eig_gen_twosided_balance(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& lvecs, Mat< std::complex<typename T1::pod_type> >& rvecs, const Base<typename T1::pod_type,T1>& expr);
template<typename T1>
inline static bool eig_gen_twosided_balance(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& lvecs, Mat< std::complex<typename T1::pod_type> >& rvecs, const Base< std::complex<typename T1::pod_type>, T1 >& expr);
//
// eig_pair
template<typename T1, typename T2>
inline static bool eig_pair(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& vecs, const bool vecs_on, const Base<typename T1::pod_type,T1>& A_expr, const Base<typename T1::pod_type,T2>& B_expr);
template<typename T1, typename T2>
inline static bool eig_pair(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& vecs, const bool vecs_on, const Base< std::complex<typename T1::pod_type>, T1 >& A_expr, const Base< std::complex<typename T1::pod_type>, T2 >& B_expr);
//
// eig_pair_twosided
template<typename T1, typename T2>
inline static bool eig_pair_twosided(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& lvecs, Mat< std::complex<typename T1::pod_type> >& rvecs, const Base<typename T1::pod_type,T1>& A_expr, const Base<typename T1::pod_type,T2>& B_expr);
template<typename T1, typename T2>
inline static bool eig_pair_twosided(Mat< std::complex<typename T1::pod_type> >& vals, Mat< std::complex<typename T1::pod_type> >& lvecs, Mat< std::complex<typename T1::pod_type> >& rvecs, const Base< std::complex<typename T1::pod_type>, T1 >& A_expr, const Base< std::complex<typename T1::pod_type>, T2 >& B_expr);
//
// eig_sym
template<typename eT>
inline static bool eig_sym(Col<eT>& eigval, Mat<eT>& A);
template<typename T>
inline static bool eig_sym(Col<T>& eigval, Mat< std::complex<T> >& A);
template<typename eT>
inline static bool eig_sym(Col<eT>& eigval, Mat<eT>& eigvec, const Mat<eT>& X);
template<typename T>
inline static bool eig_sym(Col<T>& eigval, Mat< std::complex<T> >& eigvec, const Mat< std::complex<T> >& X);
template<typename eT>
inline static bool eig_sym_dc(Col<eT>& eigval, Mat<eT>& eigvec, const Mat<eT>& X);
template<typename T>
inline static bool eig_sym_dc(Col<T>& eigval, Mat< std::complex<T> >& eigvec, const Mat< std::complex<T> >& X);
//
// chol
template<typename eT>
inline static bool chol_simple(Mat<eT>& X);
template<typename eT>
inline static bool chol(Mat<eT>& X, const uword layout);
template<typename eT>
inline static bool chol_band(Mat<eT>& X, const uword KD, const uword layout);
template<typename T>
inline static bool chol_band(Mat< std::complex<T> >& X, const uword KD, const uword layout);
template<typename eT>
inline static bool chol_band_common(Mat<eT>& X, const uword KD, const uword layout);
template<typename eT>
inline static bool chol_pivot(Mat<eT>& X, Mat<uword>& P, const uword layout);
//
// hessenberg decomposition
template<typename eT, typename T1>
inline static bool hess(Mat<eT>& H, const Base<eT,T1>& X, Col<eT>& tao);
//
// qr
template<typename eT, typename T1>
inline static bool qr(Mat<eT>& Q, Mat<eT>& R, const Base<eT,T1>& X);
template<typename eT, typename T1>
inline static bool qr_econ(Mat<eT>& Q, Mat<eT>& R, const Base<eT,T1>& X);
template<typename eT, typename T1>
inline static bool qr_pivot(Mat<eT>& Q, Mat<eT>& R, Mat<uword>& P, const Base<eT,T1>& X);
template<typename T, typename T1>
inline static bool qr_pivot(Mat< std::complex<T> >& Q, Mat< std::complex<T> >& R, Mat<uword>& P, const Base<std::complex<T>,T1>& X);
//
// svd
template<typename eT>
inline static bool svd(Col<eT>& S, Mat<eT>& A);
template<typename T>
inline static bool svd(Col<T>& S, Mat< std::complex<T> >& A);
template<typename eT>
inline static bool svd(Mat<eT>& U, Col<eT>& S, Mat<eT>& V, Mat<eT>& A);
template<typename T>
inline static bool svd(Mat< std::complex<T> >& U, Col<T>& S, Mat< std::complex<T> >& V, Mat< std::complex<T> >& A);
template<typename eT>
inline static bool svd_econ(Mat<eT>& U, Col<eT>& S, Mat<eT>& V, Mat<eT>& A, const char mode);
template<typename T>
inline static bool svd_econ(Mat< std::complex<T> >& U, Col<T>& S, Mat< std::complex<T> >& V, Mat< std::complex<T> >& A, const char mode);
template<typename eT>
inline static bool svd_dc(Col<eT>& S, Mat<eT>& A);
template<typename T>
inline static bool svd_dc(Col<T>& S, Mat< std::complex<T> >& A);
template<typename eT>
inline static bool svd_dc(Mat<eT>& U, Col<eT>& S, Mat<eT>& V, Mat<eT>& A);
template<typename T>
inline static bool svd_dc(Mat< std::complex<T> >& U, Col<T>& S, Mat< std::complex<T> >& V, Mat< std::complex<T> >& A);
template<typename eT>
inline static bool svd_dc_econ(Mat<eT>& U, Col<eT>& S, Mat<eT>& V, Mat<eT>& A);
template<typename T>
inline static bool svd_dc_econ(Mat< std::complex<T> >& U, Col<T>& S, Mat< std::complex<T> >& V, Mat< std::complex<T> >& A);
//
// solve
template<typename T1>
inline static bool solve_square_fast(Mat<typename T1::elem_type>& out, Mat<typename T1::elem_type>& A, const Base<typename T1::elem_type,T1>& B_expr);
template<typename T1>
inline static bool solve_square_rcond(Mat<typename T1::elem_type>& out, typename T1::pod_type& out_rcond, Mat<typename T1::elem_type>& A, const Base<typename T1::elem_type,T1>& B_expr);
template<typename T1>
inline static bool solve_square_refine(Mat<typename T1::pod_type>& out, typename T1::pod_type& out_rcond, Mat<typename T1::pod_type>& A, const Base<typename T1::pod_type,T1>& B_expr, const bool equilibrate);
template<typename T1>
inline static bool solve_square_refine(Mat< std::complex<typename T1::pod_type> >& out, typename T1::pod_type& out_rcond, Mat< std::complex<typename T1::pod_type> >& A, const Base<std::complex<typename T1::pod_type>,T1>& B_expr, const bool equilibrate);
//
template<typename T1>
inline static bool solve_sympd_fast(Mat<typename T1::elem_type>& out, Mat<typename T1::elem_type>& A, const Base<typename T1::elem_type,T1>& B_expr);
template<typename T1>
inline static bool solve_sympd_fast_common(Mat<typename T1::elem_type>& out, Mat<typename T1::elem_type>& A, const Base<typename T1::elem_type,T1>& B_expr);
template<typename T1>
inline static bool solve_sympd_rcond(Mat<typename T1::pod_type>& out, bool& out_sympd_state, typename T1::pod_type& out_rcond, Mat<typename T1::pod_type>& A, const Base<typename T1::pod_type,T1>& B_expr);
template<typename T1>
inline static bool solve_sympd_rcond(Mat< std::complex<typename T1::pod_type> >& out, bool& out_sympd_state, typename T1::pod_type& out_rcond, Mat< std::complex<typename T1::pod_type> >& A, const Base< std::complex<typename T1::pod_type>,T1>& B_expr);
template<typename T1>
inline static bool solve_sympd_refine(Mat<typename T1::pod_type>& out, typename T1::pod_type& out_rcond, Mat<typename T1::pod_type>& A, const Base<typename T1::pod_type,T1>& B_expr, const bool equilibrate);
template<typename T1>
inline static bool solve_sympd_refine(Mat< std::complex<typename T1::pod_type> >& out, typename T1::pod_type& out_rcond, Mat< std::complex<typename T1::pod_type> >& A, const Base<std::complex<typename T1::pod_type>,T1>& B_expr, const bool equilibrate);
//
template<typename T1>
inline static bool solve_rect_fast(Mat<typename T1::elem_type>& out, Mat<typename T1::elem_type>& A, const Base<typename T1::elem_type,T1>& B_expr);
template<typename T1>
inline static bool solve_rect_rcond(Mat<typename T1::elem_type>& out, typename T1::pod_type& out_rcond, Mat<typename T1::elem_type>& A, const Base<typename T1::elem_type,T1>& B_expr);
//
template<typename T1>
inline static bool solve_approx_svd(Mat<typename T1::pod_type>& out, Mat<typename T1::pod_type>& A, const Base<typename T1::pod_type,T1>& B_expr);
template<typename T1>
inline static bool solve_approx_svd(Mat< std::complex<typename T1::pod_type> >& out, Mat< std::complex<typename T1::pod_type> >& A, const Base<std::complex<typename T1::pod_type>,T1>& B_expr);
//
template<typename T1>
inline static bool solve_trimat_fast(Mat<typename T1::elem_type>& out, const Mat<typename T1::elem_type>& A, const Base<typename T1::elem_type,T1>& B_expr, const uword layout);
template<typename T1>
inline static bool solve_trimat_rcond(Mat<typename T1::elem_type>& out, typename T1::pod_type& out_rcond, const Mat<typename T1::elem_type>& A, const Base<typename T1::elem_type,T1>& B_expr, const uword layout);
//
template<typename T1>
inline static bool solve_band_fast(Mat<typename T1::pod_type>& out, Mat<typename T1::pod_type>& A, const uword KL, const uword KU, const Base<typename T1::pod_type,T1>& B_expr);
template<typename T1>
inline static bool solve_band_fast(Mat< std::complex<typename T1::pod_type> >& out, Mat< std::complex<typename T1::pod_type> >& A, const uword KL, const uword KU, const Base< std::complex<typename T1::pod_type>,T1>& B_expr);
template<typename T1>
inline static bool solve_band_fast_common(Mat<typename T1::elem_type>& out, const Mat<typename T1::elem_type>& A, const uword KL, const uword KU, const Base<typename T1::elem_type,T1>& B_expr);
template<typename T1>
inline static bool solve_band_rcond(Mat<typename T1::pod_type>& out, typename T1::pod_type& out_rcond, Mat<typename T1::pod_type>& A, const uword KL, const uword KU, const Base<typename T1::pod_type,T1>& B_expr);
template<typename T1>
inline static bool solve_band_rcond(Mat< std::complex<typename T1::pod_type> >& out, typename T1::pod_type& out_rcond, Mat< std::complex<typename T1::pod_type> >& A, const uword KL, const uword KU, const Base< std::complex<typename T1::pod_type>,T1>& B_expr);
template<typename T1>
inline static bool solve_band_rcond_common(Mat<typename T1::elem_type>& out, typename T1::pod_type& out_rcond, const Mat<typename T1::elem_type>& A, const uword KL, const uword KU, const Base<typename T1::elem_type,T1>& B_expr);
template<typename T1>
inline static bool solve_band_refine(Mat<typename T1::pod_type>& out, typename T1::pod_type& out_rcond, Mat<typename T1::pod_type>& A, const uword KL, const uword KU, const Base<typename T1::pod_type,T1>& B_expr, const bool equilibrate);
template<typename T1>
inline static bool solve_band_refine(Mat< std::complex<typename T1::pod_type> >& out, typename T1::pod_type& out_rcond, Mat< std::complex<typename T1::pod_type> >& A, const uword KL, const uword KU, const Base<std::complex<typename T1::pod_type>,T1>& B_expr, const bool equilibrate);
//
template<typename T1>
inline static bool solve_tridiag_fast(Mat<typename T1::pod_type>& out, Mat<typename T1::pod_type>& A, const Base<typename T1::pod_type,T1>& B_expr);
template<typename T1>
inline static bool solve_tridiag_fast(Mat< std::complex<typename T1::pod_type> >& out, Mat< std::complex<typename T1::pod_type> >& A, const Base< std::complex<typename T1::pod_type>,T1>& B_expr);
template<typename T1>
inline static bool solve_tridiag_fast_common(Mat<typename T1::elem_type>& out, const Mat<typename T1::elem_type>& A, const Base<typename T1::elem_type,T1>& B_expr);
//
// Schur decomposition
template<typename eT, typename T1>
inline static bool schur(Mat<eT>& U, Mat<eT>& S, const Base<eT,T1>& X, const bool calc_U = true);
template<typename T, typename T1>
inline static bool schur(Mat< std::complex<T> >& U, Mat< std::complex<T> >& S, const Base<std::complex<T>,T1>& X, const bool calc_U = true);
template<typename T>
inline static bool schur(Mat< std::complex<T> >& U, Mat< std::complex<T> >& S, const bool calc_U = true);
//
// solve the Sylvester equation AX + XB = C
template<typename eT>
inline static bool syl(Mat<eT>& X, const Mat<eT>& A, const Mat<eT>& B, const Mat<eT>& C);
//
// QZ decomposition
template<typename T, typename T1, typename T2>
inline static bool qz(Mat<T>& A, Mat<T>& B, Mat<T>& vsl, Mat<T>& vsr, const Base<T,T1>& X_expr, const Base<T,T2>& Y_expr, const char mode);
template<typename T, typename T1, typename T2>
inline static bool qz(Mat< std::complex<T> >& A, Mat< std::complex<T> >& B, Mat< std::complex<T> >& vsl, Mat< std::complex<T> >& vsr, const Base< std::complex<T>, T1 >& X_expr, const Base< std::complex<T>, T2 >& Y_expr, const char mode);
//
// rcond
template<typename eT>
inline static eT rcond(Mat<eT>& A);
template<typename T>
inline static T rcond(Mat< std::complex<T> >& A);
template<typename eT>
inline static eT rcond_sympd(Mat<eT>& A, bool& calc_ok);
template<typename T>
inline static T rcond_sympd(Mat< std::complex<T> >& A, bool& calc_ok);
template<typename eT>
inline static eT rcond_trimat(const Mat<eT>& A, const uword layout);
template<typename T>
inline static T rcond_trimat(const Mat< std::complex<T> >& A, const uword layout);
//
// lu_rcond (rcond from pre-computed LU decomposition)
template<typename eT>
inline static eT lu_rcond(const Mat<eT>& A, const eT norm_val);
template<typename T>
inline static T lu_rcond(const Mat< std::complex<T> >& A, const T norm_val);
template<typename eT>
inline static eT lu_rcond_sympd(const Mat<eT>& A, const eT norm_val);
template<typename T>
inline static T lu_rcond_sympd(const Mat< std::complex<T> >& A, const T norm_val);
template<typename eT>
inline static eT lu_rcond_band(const Mat<eT>& AB, const uword KL, const uword KU, const podarray<blas_int>& ipiv, const eT norm_val);
template<typename T>
inline static T lu_rcond_band(const Mat< std::complex<T> >& AB, const uword KL, const uword KU, const podarray<blas_int>& ipiv, const T norm_val);
//
// misc
template<typename T1>
inline static bool crippled_lapack(const Base<typename T1::elem_type, T1>&);
template<typename eT>
inline static bool rudimentary_sym_check(const Mat<eT>& X);
template<typename T>
inline static bool rudimentary_sym_check(const Mat< std::complex<T> >& X);
template<typename eT>
inline static typename get_pod_type<eT>::result norm1_gen(const Mat<eT>& A);
template<typename eT>
inline static typename get_pod_type<eT>::result norm1_sym(const Mat<eT>& A);
template<typename eT>
inline static typename get_pod_type<eT>::result norm1_band(const Mat<eT>& A, const uword KL, const uword KU);
};
namespace qz_helper
{
template<typename T> inline blas_int select_lhp(const T* x_ptr, const T* y_ptr, const T* z_ptr);
template<typename T> inline blas_int select_rhp(const T* x_ptr, const T* y_ptr, const T* z_ptr);
template<typename T> inline blas_int select_iuc(const T* x_ptr, const T* y_ptr, const T* z_ptr);
template<typename T> inline blas_int select_ouc(const T* x_ptr, const T* y_ptr, const T* z_ptr);
template<typename T> inline blas_int cx_select_lhp(const std::complex<T>* x_ptr, const std::complex<T>* y_ptr);
template<typename T> inline blas_int cx_select_rhp(const std::complex<T>* x_ptr, const std::complex<T>* y_ptr);
template<typename T> inline blas_int cx_select_iuc(const std::complex<T>* x_ptr, const std::complex<T>* y_ptr);
template<typename T> inline blas_int cx_select_ouc(const std::complex<T>* x_ptr, const std::complex<T>* y_ptr);
template<typename T> inline void_ptr ptr_cast(blas_int (*function)(const T*, const T*, const T*));
template<typename T> inline void_ptr ptr_cast(blas_int (*function)(const std::complex<T>*, const std::complex<T>*));
}
//! @}
|