1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
// SPDX-License-Identifier: Apache-2.0
//
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------
//! \addtogroup fn_n_unique
//! @{
//! \brief
//! Get the number of unique nonzero elements in two sparse matrices.
//! This is very useful for determining the amount of memory necessary before
//! a sparse matrix operation on two matrices.
template<typename T1, typename T2, typename op_n_unique_type>
inline
uword
n_unique
(
const SpBase<typename T1::elem_type, T1>& x,
const SpBase<typename T2::elem_type, T2>& y,
const op_n_unique_type junk
)
{
arma_extra_debug_sigprint();
const SpProxy<T1> pa(x.get_ref());
const SpProxy<T2> pb(y.get_ref());
return n_unique(pa,pb,junk);
}
template<typename T1, typename T2, typename op_n_unique_type>
arma_hot
inline
uword
n_unique
(
const SpProxy<T1>& pa,
const SpProxy<T2>& pb,
const op_n_unique_type junk
)
{
arma_extra_debug_sigprint();
arma_ignore(junk);
typename SpProxy<T1>::const_iterator_type x_it = pa.begin();
typename SpProxy<T1>::const_iterator_type x_it_end = pa.end();
typename SpProxy<T2>::const_iterator_type y_it = pb.begin();
typename SpProxy<T2>::const_iterator_type y_it_end = pb.end();
uword total_n_nonzero = 0;
while( (x_it != x_it_end) || (y_it != y_it_end) )
{
if(x_it == y_it)
{
if(op_n_unique_type::eval((*x_it), (*y_it)) != typename T1::elem_type(0))
{
++total_n_nonzero;
}
++x_it;
++y_it;
}
else
{
if((x_it.col() < y_it.col()) || ((x_it.col() == y_it.col()) && (x_it.row() < y_it.row()))) // if y is closer to the end
{
if(op_n_unique_type::eval((*x_it), typename T1::elem_type(0)) != typename T1::elem_type(0))
{
++total_n_nonzero;
}
++x_it;
}
else // x is closer to the end
{
if(op_n_unique_type::eval(typename T1::elem_type(0), (*y_it)) != typename T1::elem_type(0))
{
++total_n_nonzero;
}
++y_it;
}
}
}
return total_n_nonzero;
}
// Simple operators.
struct op_n_unique_add
{
template<typename eT> inline static eT eval(const eT& l, const eT& r) { return (l + r); }
};
struct op_n_unique_sub
{
template<typename eT> inline static eT eval(const eT& l, const eT& r) { return (l - r); }
};
struct op_n_unique_mul
{
template<typename eT> inline static eT eval(const eT& l, const eT& r) { return (l * r); }
};
struct op_n_unique_count
{
template<typename eT> inline static eT eval(const eT&, const eT&) { return eT(1); }
};
//! @}
|