summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/fn_sprandn.hpp
blob: 1798224ad89a16df28cabbcccf6d89dcbcecb6e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
// SPDX-License-Identifier: Apache-2.0
// 
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
// 
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------


//! \addtogroup fn_sprandn
//! @{



//! Generate a sparse matrix with a randomly selected subset of the elements
//! set to random values from a Gaussian distribution with zero mean and unit variance
template<typename obj_type>
arma_warn_unused
inline
obj_type
sprandn
  (
  const uword  n_rows,
  const uword  n_cols,
  const double density,
  const typename arma_SpMat_SpCol_SpRow_only<obj_type>::result* junk = nullptr
  )
  {
  arma_extra_debug_sigprint();
  arma_ignore(junk);
  
  if(is_SpCol<obj_type>::value)
    {
    arma_debug_check( (n_cols != 1), "sprandn(): incompatible size" );
    }
  else
  if(is_SpRow<obj_type>::value)
    {
    arma_debug_check( (n_rows != 1), "sprandn(): incompatible size" );
    }
  
  obj_type out;
  
  out.sprandn(n_rows, n_cols, density);
  
  return out;
  }



template<typename obj_type>
arma_warn_unused
inline
obj_type
sprandn(const SizeMat& s, const double density, const typename arma_SpMat_SpCol_SpRow_only<obj_type>::result* junk = nullptr)
  {
  arma_extra_debug_sigprint();
  arma_ignore(junk);
  
  return sprandn<obj_type>(s.n_rows, s.n_cols, density);
  }



arma_warn_unused
inline
sp_mat
sprandn(const uword n_rows, const uword n_cols, const double density)
  {
  arma_extra_debug_sigprint();
  
  sp_mat out;
  
  out.sprandn(n_rows, n_cols, density);
  
  return out;
  }



arma_warn_unused
inline
sp_mat
sprandn(const SizeMat& s, const double density)
  {
  arma_extra_debug_sigprint();
  
  sp_mat out;
  
  out.sprandn(s.n_rows, s.n_cols, density);
  
  return out;
  }



//! Generate a sparse matrix with the non-zero values in the same locations as in the given sparse matrix X,
//! with the non-zero values set to random values from a Gaussian distribution with zero mean and unit variance
template<typename T1>
arma_warn_unused
inline
SpMat<typename T1::elem_type>
sprandn(const SpBase<typename T1::elem_type, T1>& X)
  {
  arma_extra_debug_sigprint();
  
  typedef typename T1::elem_type eT;
  
  SpMat<eT> out( X.get_ref() );
  
  arma_rng::randn<eT>::fill( access::rwp(out.values), out.n_nonzero );
  
  return out;
  }



//! @}