summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/newarp_TridiagEigen_meat.hpp
blob: b11cfec41400a570f1fe9b6842d33adcc3702095 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// SPDX-License-Identifier: Apache-2.0
// 
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
// 
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------


namespace newarp
{


template<typename eT>
inline
TridiagEigen<eT>::TridiagEigen()
  : n(0)
  , computed(false)
  {
  arma_extra_debug_sigprint();
  }



template<typename eT>
inline
TridiagEigen<eT>::TridiagEigen(const Mat<eT>& mat_obj)
  : n(mat_obj.n_rows)
  , computed(false)
  {
  arma_extra_debug_sigprint();
  
  compute(mat_obj);
  }



template<typename eT>
inline
void
TridiagEigen<eT>::compute(const Mat<eT>& mat_obj)
  {
  arma_extra_debug_sigprint();
  
  arma_debug_check( (mat_obj.is_square() == false), "newarp::TridiagEigen::compute(): matrix must be square" );
  
  n = blas_int(mat_obj.n_rows);
  
  main_diag = mat_obj.diag();
  sub_diag  = mat_obj.diag(-1);
  
  evecs.set_size(n, n);
  
  char     compz      = 'I';
  blas_int lwork_min  = 1 + 4*n + n*n;
  blas_int liwork_min = 3 + 5*n;
  blas_int info       = blas_int(0);
  
  blas_int  lwork_proposed = 0;
  blas_int liwork_proposed = 0;
  
  if(n >= 32)
    {
    eT        work_query[2] = {};
    blas_int lwork_query    = blas_int(-1);
    
    blas_int  iwork_query[2] = {};
    blas_int liwork_query    = blas_int(-1);
    
    arma_extra_debug_print("lapack::stedc()");
    lapack::stedc(&compz, &n, main_diag.memptr(), sub_diag.memptr(), evecs.memptr(), &n, &work_query[0], &lwork_query, &iwork_query[0], &liwork_query, &info);
    
    if(info != 0)  { arma_stop_runtime_error("lapack::stedc(): couldn't get size of work arrays"); return; }
    
     lwork_proposed = static_cast<blas_int>( work_query[0] );
    liwork_proposed = iwork_query[0];
    }
  
  blas_int  lwork = (std::max)( lwork_min,  lwork_proposed);
  blas_int liwork = (std::max)(liwork_min, liwork_proposed);
  
  podarray<eT>        work( static_cast<uword>( lwork) );
  podarray<blas_int> iwork( static_cast<uword>(liwork) );
  
  arma_extra_debug_print("lapack::stedc()");
  lapack::stedc(&compz, &n, main_diag.memptr(), sub_diag.memptr(), evecs.memptr(), &n, work.memptr(), &lwork, iwork.memptr(), &liwork, &info);
  
  if(info != 0)  { arma_stop_runtime_error("lapack::stedc(): failed to compute all eigenvalues"); return; }
  
  computed = true;
  }



template<typename eT>
inline
Col<eT>
TridiagEigen<eT>::eigenvalues()
  {
  arma_extra_debug_sigprint();
  
  arma_debug_check( (computed == false), "newarp::TridiagEigen::eigenvalues(): need to call compute() first" );

  // After calling compute(), main_diag will contain the eigenvalues.
  return main_diag;
  }



template<typename eT>
inline
Mat<eT>
TridiagEigen<eT>::eigenvectors()
  {
  arma_extra_debug_sigprint();
  
  arma_debug_check( (computed == false), "newarp::TridiagEigen::eigenvectors(): need to call compute() first" );

  return evecs;
  }


}  // namespace newarp