summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/op_median_meat.hpp
blob: ae805153c6042c6e2468990ec4accb9032295ab5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
// SPDX-License-Identifier: Apache-2.0
// 
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
// 
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------


//! \addtogroup op_median
//! @{



template<typename T1>
inline
void
op_median::apply(Mat<typename T1::elem_type>& out, const Op<T1,op_median>& expr)
  {
  arma_extra_debug_sigprint();
  
  typedef typename T1::elem_type eT;
  
  const quasi_unwrap<T1> U(expr.m);
  
  const uword dim = expr.aux_uword_a;
  
  arma_debug_check( U.M.internal_has_nan(), "median(): detected NaN"                   );
  arma_debug_check( (dim > 1),              "median(): parameter 'dim' must be 0 or 1" );
  
  if(U.is_alias(out))
    {
    Mat<eT> tmp;
    
    op_median::apply_noalias(out, U.M, dim);
    
    out.steal_mem(tmp);
    }
  else
    {
    op_median::apply_noalias(out, U.M, dim);
    }
  }



template<typename eT>
inline
void
op_median::apply_noalias(Mat<eT>& out, const Mat<eT>& X, const uword dim, const typename arma_not_cx<eT>::result* junk)
  {
  arma_extra_debug_sigprint();
  arma_ignore(junk);
  
  const uword X_n_rows = X.n_rows;
  const uword X_n_cols = X.n_cols;
  
  if(dim == 0)  // in each column
    {
    arma_extra_debug_print("op_median::apply(): dim = 0");
    
    out.set_size((X_n_rows > 0) ? 1 : 0, X_n_cols);
    
    if(X_n_rows > 0)
      {
      std::vector<eT> tmp_vec(X_n_rows);
      
      for(uword col=0; col < X_n_cols; ++col)
        {
        arrayops::copy( &(tmp_vec[0]), X.colptr(col), X_n_rows );
        
        out[col] = op_median::direct_median(tmp_vec);
        }
      }
    }
  else
  if(dim == 1)  // in each row
    {
    arma_extra_debug_print("op_median::apply(): dim = 1");
    
    out.set_size(X_n_rows, (X_n_cols > 0) ? 1 : 0);
    
    if(X_n_cols > 0)
      {
      std::vector<eT> tmp_vec(X_n_cols);
        
      for(uword row=0; row < X_n_rows; ++row)
        {
        for(uword col=0; col < X_n_cols; ++col)  { tmp_vec[col] = X.at(row,col); }
        
        out[row] = op_median::direct_median(tmp_vec);
        }
      }
    }
  }



template<typename eT>
inline
void
op_median::apply_noalias(Mat<eT>& out, const Mat<eT>& X, const uword dim, const typename arma_cx_only<eT>::result* junk)
  {
  arma_extra_debug_sigprint();
  arma_ignore(junk);
  
  typedef typename get_pod_type<eT>::result T;
  
  const uword X_n_rows = X.n_rows;
  const uword X_n_cols = X.n_cols;
  
  if(dim == 0)  // in each column
    {
    arma_extra_debug_print("op_median::apply(): dim = 0");
    
    out.set_size((X_n_rows > 0) ? 1 : 0, X_n_cols);
    
    if(X_n_rows > 0)
      {
      std::vector< arma_cx_median_packet<T> > tmp_vec(X_n_rows);
      
      for(uword col=0; col<X_n_cols; ++col)
        {
        const eT* colmem = X.colptr(col);
        
        for(uword row=0; row<X_n_rows; ++row)
          {
          tmp_vec[row].val   = std::abs(colmem[row]);
          tmp_vec[row].index = row;
          }
        
        uword index1 = 0;
        uword index2 = 0;
        op_median::direct_cx_median_index(index1, index2, tmp_vec);
          
        out[col] = op_mean::robust_mean(colmem[index1], colmem[index2]);
        }
      }
    }
  else
  if(dim == 1)  // in each row
    {
    arma_extra_debug_print("op_median::apply(): dim = 1");
    
    out.set_size(X_n_rows, (X_n_cols > 0) ? 1 : 0);
    
    if(X_n_cols > 0)
      {
      std::vector< arma_cx_median_packet<T> > tmp_vec(X_n_cols);
      
      for(uword row=0; row<X_n_rows; ++row)
        {
        for(uword col=0; col<X_n_cols; ++col)
          {
          tmp_vec[col].val   = std::abs(X.at(row,col));
          tmp_vec[col].index = col;
          }
        
        uword index1 = 0;
        uword index2 = 0;
        op_median::direct_cx_median_index(index1, index2, tmp_vec);
        
        out[row] = op_mean::robust_mean( X.at(row,index1), X.at(row,index2) );
        }
      }
    }
  }



template<typename T1>
inline
typename T1::elem_type
op_median::median_vec
  (
  const T1& X,
  const typename arma_not_cx<typename T1::elem_type>::result* junk
  )
  {
  arma_extra_debug_sigprint();
  arma_ignore(junk);
  
  typedef typename T1::elem_type eT;
  
  const quasi_unwrap<T1> U(X);
  
  const uword n_elem = U.M.n_elem;
  
  if(n_elem == 0)
    {
    arma_debug_check(true, "median(): object has no elements");
    
    return Datum<eT>::nan;
    }
  
  arma_debug_check( U.M.internal_has_nan(), "median(): detected NaN" );
  
  std::vector<eT> tmp_vec(n_elem);
  
  arrayops::copy( &(tmp_vec[0]), U.M.memptr(), n_elem );
  
  return op_median::direct_median(tmp_vec);
  }



template<typename T1>
inline
typename T1::elem_type
op_median::median_vec
  (
  const T1& X,
  const typename arma_cx_only<typename T1::elem_type>::result* junk
  )
  {
  arma_extra_debug_sigprint();
  arma_ignore(junk);
  
  typedef typename T1::elem_type eT;
  typedef typename T1::pod_type   T;
  
  const quasi_unwrap<T1> U(X);
  
  const uword n_elem = U.M.n_elem;
  
  if(n_elem == 0)
    {
    arma_debug_check(true, "median(): object has no elements");
    
    return Datum<eT>::nan;
    }
  
  arma_debug_check( U.M.internal_has_nan(), "median(): detected NaN" );
  
  std::vector< arma_cx_median_packet<T> > tmp_vec(n_elem);
  
  const eT* A = U.M.memptr();
  
  for(uword i=0; i<n_elem; ++i)
    {
    tmp_vec[i].val   = std::abs( A[i] );
    tmp_vec[i].index = i;
    }
  
  uword index1 = 0;
  uword index2 = 0;
  op_median::direct_cx_median_index(index1, index2, tmp_vec);
  
  return op_mean::robust_mean( A[index1], A[index2] );
  }



template<typename eT>
inline 
eT
op_median::direct_median(std::vector<eT>& X)
  {
  arma_extra_debug_sigprint();
  
  const uword n_elem = uword(X.size());
  const uword half   = n_elem/2;
  
  typename std::vector<eT>::iterator first    = X.begin();
  typename std::vector<eT>::iterator nth      = first + half;
  typename std::vector<eT>::iterator pastlast = X.end();
  
  std::nth_element(first, nth, pastlast);
  
  if((n_elem % 2) == 0)  // even number of elements
    {
    typename std::vector<eT>::iterator start   = X.begin();
    typename std::vector<eT>::iterator pastend = start + half;
    
    const eT val1 = (*nth);
    const eT val2 = (*(std::max_element(start, pastend)));
    
    return op_mean::robust_mean(val1, val2);
    }
  else  // odd number of elements
    {
    return (*nth);
    }
  }



template<typename T>
inline 
void
op_median::direct_cx_median_index
  (
  uword& out_index1, 
  uword& out_index2, 
  std::vector< arma_cx_median_packet<T> >& X
  )
  {
  arma_extra_debug_sigprint();
  
  typedef arma_cx_median_packet<T> eT;
  
  const uword n_elem = uword(X.size());
  const uword half   = n_elem/2;
  
  typename std::vector<eT>::iterator first    = X.begin();
  typename std::vector<eT>::iterator nth      = first + half;
  typename std::vector<eT>::iterator pastlast = X.end();
  
  std::nth_element(first, nth, pastlast);
  
  out_index1 = (*nth).index;
  
  if((n_elem % 2) == 0)  // even number of elements
    {
    typename std::vector<eT>::iterator start   = X.begin();
    typename std::vector<eT>::iterator pastend = start + half;
    
    out_index2 = (*(std::max_element(start, pastend))).index;
    }
  else  // odd number of elements
    {
    out_index2 = out_index1;
    }
  }



//! @}