1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
// SPDX-License-Identifier: Apache-2.0
//
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------
//! \addtogroup spglue_times
//! @{
template<typename T1, typename T2>
inline
void
spglue_times::apply(SpMat<typename T1::elem_type>& out, const SpGlue<T1,T2,spglue_times>& X)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const unwrap_spmat<T1> UA(X.A);
const unwrap_spmat<T2> UB(X.B);
const bool is_alias = (UA.is_alias(out) || UB.is_alias(out));
if(is_alias == false)
{
spglue_times::apply_noalias(out, UA.M, UB.M);
}
else
{
SpMat<eT> tmp;
spglue_times::apply_noalias(tmp, UA.M, UB.M);
out.steal_mem(tmp);
}
}
template<typename T1, typename T2>
inline
void
spglue_times::apply(SpMat<typename T1::elem_type>& out, const SpGlue<SpOp<T1,spop_scalar_times>,T2,spglue_times>& X)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT;
const unwrap_spmat<T1> UA(X.A.m);
const unwrap_spmat<T2> UB(X.B);
const bool is_alias = (UA.is_alias(out) || UB.is_alias(out));
if(is_alias == false)
{
spglue_times::apply_noalias(out, UA.M, UB.M);
}
else
{
SpMat<eT> tmp;
spglue_times::apply_noalias(tmp, UA.M, UB.M);
out.steal_mem(tmp);
}
out *= X.A.aux;
}
template<typename eT>
inline
void
spglue_times::apply_noalias(SpMat<eT>& c, const SpMat<eT>& x, const SpMat<eT>& y)
{
arma_extra_debug_sigprint();
const uword x_n_rows = x.n_rows;
const uword x_n_cols = x.n_cols;
const uword y_n_rows = y.n_rows;
const uword y_n_cols = y.n_cols;
arma_debug_assert_mul_size(x_n_rows, x_n_cols, y_n_rows, y_n_cols, "matrix multiplication");
// First we must determine the structure of the new matrix (column pointers).
// This follows the algorithm described in 'Sparse Matrix Multiplication
// Package (SMMP)' (R.E. Bank and C.C. Douglas, 2001). Their description of
// "SYMBMM" does not include anything about memory allocation. In addition it
// does not consider that there may be elements which space may be allocated
// for but which evaluate to zero anyway. So we have to modify the algorithm
// to work that way. For the "SYMBMM" implementation we will not determine
// the row indices but instead just the column pointers.
//SpMat<typename T1::elem_type> c(x_n_rows, y_n_cols); // Initializes col_ptrs to 0.
c.zeros(x_n_rows, y_n_cols);
//if( (x.n_elem == 0) || (y.n_elem == 0) ) { return; }
if( (x.n_nonzero == 0) || (y.n_nonzero == 0) ) { return; }
// Auxiliary storage which denotes when items have been found.
podarray<uword> index(x_n_rows);
index.fill(x_n_rows); // Fill with invalid links.
typename SpMat<eT>::const_iterator y_it = y.begin();
typename SpMat<eT>::const_iterator y_end = y.end();
// SYMBMM: calculate column pointers for resultant matrix to obtain a good
// upper bound on the number of nonzero elements.
uword cur_col_length = 0;
uword last_ind = x_n_rows + 1;
do
{
const uword y_it_row = y_it.row();
// Look through the column that this point (*y_it) could affect.
typename SpMat<eT>::const_iterator x_it = x.begin_col_no_sync(y_it_row);
while(x_it.col() == y_it_row)
{
const uword x_it_row = x_it.row();
// A point at x(i, j) and y(j, k) implies a point at c(i, k).
if(index[x_it_row] == x_n_rows)
{
index[x_it_row] = last_ind;
last_ind = x_it_row;
++cur_col_length;
}
++x_it;
}
const uword old_col = y_it.col();
++y_it;
// See if column incremented.
if(old_col != y_it.col())
{
// Set column pointer (this is not a cumulative count; that is done later).
access::rw(c.col_ptrs[old_col + 1]) = cur_col_length;
cur_col_length = 0;
// Return index markers to zero. Use last_ind for traversal.
while(last_ind != x_n_rows + 1)
{
const uword tmp = index[last_ind];
index[last_ind] = x_n_rows;
last_ind = tmp;
}
}
}
while(y_it != y_end);
// Accumulate column pointers.
for(uword i = 0; i < c.n_cols; ++i)
{
access::rw(c.col_ptrs[i + 1]) += c.col_ptrs[i];
}
// Now that we know a decent bound on the number of nonzero elements,
// allocate the memory and fill it.
const uword max_n_nonzero = c.col_ptrs[c.n_cols];
c.mem_resize(max_n_nonzero);
// Now the implementation of the NUMBMM algorithm.
uword cur_pos = 0; // Current position in c matrix.
podarray<eT> sums(x_n_rows); // Partial sums.
sums.zeros();
podarray<uword> sorted_indices(x_n_rows); // upper bound
// last_ind is already set to x_n_rows, and cur_col_length is already set to 0.
// We will loop through all columns as necessary.
uword cur_col = 0;
while(cur_col < c.n_cols)
{
// Skip to next column with elements in it.
while((cur_col < c.n_cols) && (c.col_ptrs[cur_col] == c.col_ptrs[cur_col + 1]))
{
// Update current column pointer to actual number of nonzero elements up
// to this point.
access::rw(c.col_ptrs[cur_col]) = cur_pos;
++cur_col;
}
if(cur_col == c.n_cols) { break; }
// Update current column pointer.
access::rw(c.col_ptrs[cur_col]) = cur_pos;
// Check all elements in this column.
typename SpMat<eT>::const_iterator y_col_it = y.begin_col_no_sync(cur_col);
while(y_col_it.col() == cur_col)
{
const uword y_col_it_row = y_col_it.row();
// Check all elements in the column of the other matrix corresponding to
// the row of this column.
typename SpMat<eT>::const_iterator x_col_it = x.begin_col_no_sync(y_col_it_row);
const eT y_value = (*y_col_it);
while(x_col_it.col() == y_col_it_row)
{
const uword x_col_it_row = x_col_it.row();
// A point at x(i, j) and y(j, k) implies a point at c(i, k).
// Add to partial sum.
const eT x_value = (*x_col_it);
sums[x_col_it_row] += (x_value * y_value);
// Add point if it hasn't already been marked.
if(index[x_col_it_row] == x_n_rows)
{
index[x_col_it_row] = last_ind;
last_ind = x_col_it_row;
}
++x_col_it;
}
++y_col_it;
}
// Now sort the indices that were used in this column.
uword cur_index = 0;
while(last_ind != x_n_rows + 1)
{
const uword tmp = last_ind;
// Check that it wasn't a "fake" nonzero element.
if(sums[tmp] != eT(0))
{
// Assign to next open position.
sorted_indices[cur_index] = tmp;
++cur_index;
}
last_ind = index[tmp];
index[tmp] = x_n_rows;
}
// Now sort the indices.
if(cur_index != 0)
{
op_sort::direct_sort_ascending(sorted_indices.memptr(), cur_index);
for(uword k = 0; k < cur_index; ++k)
{
const uword row = sorted_indices[k];
access::rw(c.row_indices[cur_pos]) = row;
access::rw(c.values[cur_pos]) = sums[row];
sums[row] = eT(0);
++cur_pos;
}
}
// Move to next column.
++cur_col;
}
// Update last column pointer and resize to actual memory size.
// access::rw(c.col_ptrs[c.n_cols]) = cur_pos;
// c.mem_resize(cur_pos);
access::rw(c.col_ptrs[c.n_cols]) = cur_pos;
if(cur_pos < max_n_nonzero) { c.mem_resize(cur_pos); }
}
//
//
//
template<typename T1, typename T2>
inline
void
spglue_times_mixed::apply(SpMat<typename eT_promoter<T1,T2>::eT>& out, const mtSpGlue<typename eT_promoter<T1,T2>::eT, T1, T2, spglue_times_mixed>& expr)
{
arma_extra_debug_sigprint();
typedef typename T1::elem_type eT1;
typedef typename T2::elem_type eT2;
typedef typename eT_promoter<T1,T2>::eT out_eT;
if( (is_same_type<eT1,out_eT>::no) && (is_same_type<eT2,out_eT>::yes) )
{
// upgrade T1
const unwrap_spmat<T1> UA(expr.A);
const unwrap_spmat<T2> UB(expr.B);
const SpMat<eT1>& A = UA.M;
const SpMat<eT2>& B = UB.M;
SpMat<out_eT> AA(arma_layout_indicator(), A);
for(uword i=0; i < A.n_nonzero; ++i) { access::rw(AA.values[i]) = out_eT(A.values[i]); }
const SpMat<out_eT>& BB = reinterpret_cast< const SpMat<out_eT>& >(B);
out = AA * BB;
}
else
if( (is_same_type<eT1,out_eT>::yes) && (is_same_type<eT2,out_eT>::no) )
{
// upgrade T2
const unwrap_spmat<T1> UA(expr.A);
const unwrap_spmat<T2> UB(expr.B);
const SpMat<eT1>& A = UA.M;
const SpMat<eT2>& B = UB.M;
const SpMat<out_eT>& AA = reinterpret_cast< const SpMat<out_eT>& >(A);
SpMat<out_eT> BB(arma_layout_indicator(), B);
for(uword i=0; i < B.n_nonzero; ++i) { access::rw(BB.values[i]) = out_eT(B.values[i]); }
out = AA * BB;
}
else
{
// upgrade T1 and T2
const unwrap_spmat<T1> UA(expr.A);
const unwrap_spmat<T2> UB(expr.B);
const SpMat<eT1>& A = UA.M;
const SpMat<eT2>& B = UB.M;
SpMat<out_eT> AA(arma_layout_indicator(), A);
SpMat<out_eT> BB(arma_layout_indicator(), B);
for(uword i=0; i < A.n_nonzero; ++i) { access::rw(AA.values[i]) = out_eT(A.values[i]); }
for(uword i=0; i < B.n_nonzero; ++i) { access::rw(BB.values[i]) = out_eT(B.values[i]); }
out = AA * BB;
}
}
//! @}
|