summaryrefslogtreecommitdiffstats
path: root/src/armadillo/include/armadillo_bits/upgrade_val.hpp
blob: a5e9da2b36af0e4d8864e9fcb1afb46af861f01c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// SPDX-License-Identifier: Apache-2.0
// 
// Copyright 2008-2016 Conrad Sanderson (http://conradsanderson.id.au)
// Copyright 2008-2016 National ICT Australia (NICTA)
// 
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// 
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// ------------------------------------------------------------------------


//! \addtogroup upgrade_val
//! @{



//! upgrade_val is used to ensure an operation such as multiplication is possible between two types.
//! values are upgraded only where necessary.

template<typename T1, typename T2>
struct upgrade_val
  {
  typedef typename promote_type<T1,T2>::result T1_result;
  typedef typename promote_type<T1,T2>::result T2_result;
  
  arma_inline
  static
  typename promote_type<T1,T2>::result
  apply(const T1 x)
    {
    typedef typename promote_type<T1,T2>::result out_type;
    return out_type(x);
    }
  
  arma_inline
  static
  typename promote_type<T1,T2>::result
  apply(const T2 x)
    {
    typedef typename promote_type<T1,T2>::result out_type;
    return out_type(x);
    }
  
  };


// template<>
template<typename T>
struct upgrade_val<T,T>
  {
  typedef T T1_result;
  typedef T T2_result;
  
  arma_inline static const T& apply(const T& x) { return x; }
  };


//! upgrade a type to allow multiplication with a complex type
//! eg. the int in "int * complex<double>" is upgraded to a double
// template<>
template<typename T, typename T2>
struct upgrade_val< std::complex<T>, T2 >
  {
  typedef std::complex<T> T1_result;
  typedef T               T2_result;
  
  arma_inline static const std::complex<T>& apply(const std::complex<T>& x) { return x;    }
  arma_inline static       T                apply(const T2 x)               { return T(x); }
  };


// template<>
template<typename T1, typename T>
struct upgrade_val< T1, std::complex<T> >
  {
  typedef T               T1_result;
  typedef std::complex<T> T2_result;
  
  arma_inline static       T                apply(const T1 x)               { return T(x); }
  arma_inline static const std::complex<T>& apply(const std::complex<T>& x) { return x;    }
  };


//! ensure we don't lose precision when multiplying a complex number with a higher precision real number
template<>
struct upgrade_val< std::complex<float>, double >
  {
  typedef std::complex<double> T1_result;
  typedef double               T2_result;
  
  arma_inline static const std::complex<double> apply(const std::complex<float>& x) { return std::complex<double>(x); }
  arma_inline static       double               apply(const double x)               { return x; }
  };


template<>
struct upgrade_val< double, std::complex<float> >
  {
  typedef double              T1_result;
  typedef std::complex<float> T2_result;
  
  arma_inline static       double               apply(const double x)               { return x; }
  arma_inline static const std::complex<double> apply(const std::complex<float>& x) { return std::complex<double>(x); }
  };


//! ensure we don't lose precision when multiplying complex numbers with different underlying types
template<>
struct upgrade_val< std::complex<float>, std::complex<double> >
  {
  typedef std::complex<double> T1_result;
  typedef std::complex<double> T2_result;
  
  arma_inline static const std::complex<double>  apply(const std::complex<float>&  x) { return std::complex<double>(x); }
  arma_inline static const std::complex<double>& apply(const std::complex<double>& x) { return x; }
  };


template<>
struct upgrade_val< std::complex<double>, std::complex<float> >
  {
  typedef std::complex<double> T1_result;
  typedef std::complex<double> T2_result;
  
  arma_inline static const std::complex<double>& apply(const std::complex<double>& x) { return x; }
  arma_inline static const std::complex<double>  apply(const std::complex<float>&  x) { return std::complex<double>(x); }
  };


//! work around limitations in the complex class (at least as present in gcc 4.1 & 4.3)
template<>
struct upgrade_val< std::complex<double>, float >
  {
  typedef std::complex<double> T1_result;
  typedef double               T2_result;
  
  arma_inline static const std::complex<double>& apply(const std::complex<double>& x) { return x; }
  arma_inline static       double                apply(const float x)                 { return double(x); }
  };


template<>
struct upgrade_val< float, std::complex<double> >
  {
  typedef double               T1_result;
  typedef std::complex<double> T2_result;
  
  arma_inline static       double                apply(const float x)                 { return double(x); }
  arma_inline static const std::complex<double>& apply(const std::complex<double>& x) { return x; }
  };



//! @}