aboutsummaryrefslogtreecommitdiffstats
path: root/doc/thesis/chapters/theory.tex
blob: 67938f1606e44e89fbedd6ea6e0f8af33a55732b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
% vim: set ts=2 sw=2 noet:

\chapter{Theory}

\section{Problem description}

\section{Geometric Model}

\section{Statistical Model}
%% TODO: write about advantage of statistical model instead of geometric

%% TODO: review and rewrite notes

\subsection{Continuous time model}

Continuous time small scale fading channel response. \cite{Alimohammad2009}

time varying channel impulse response:
\begin{equation}
	h(t, \tau) = \sum_k c_k (t) \delta(\tau - \tau_k(t))
\end{equation}

received signal \(y = h * x\), i.e. convolution with channel model. 

\subsection{Time discretization of the model}

%% TODO: explain why

Assume \(x\) is a time discrete signal with and bandwidth \(W\), thus the pulse is sinc shaped
\begin{equation}
	x(t) = \sum_n x[n] \sinc(t/T - n)
\end{equation}
Ideal sampling at rate \(2W\) of \(y\) gives