1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2021 Sara Cinzia Halter.
#
# This is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3, or (at your option)
# any later version.
#
# This software is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this software; see the file COPYING. If not, write to
# the Free Software Foundation, Inc., 51 Franklin Street,
# Boston, MA 02110-1301, USA.
#
import numpy as np
from numpy.fft import fft,ifft,fftshift
from gnuradio import gr
from fadingui.logger import get_logger
log = get_logger("multipath_fading")
class multipath_fading(gr.sync_block):
"""
docstring for block multipath_fading
"""
def __init__(self, amplitudes, delays, los): # only default arguments here
"""arguments to this function show up as parameters in GRC"""
gr.sync_block.__init__(
self,
name='Embedded Python Block', # will show up in GRC
in_sig=[np.complex64],
out_sig=[np.complex64]
)
# if an attribute with the same name as a parameter is found,
# a callback is registered (properties work, too).
self.amplitudes = amplitudes
self.delays = delays
self.temp = [0]
log.debug(los) #TO DO: True False unterscheidung
if los == True:
self.los = 1
log.debug("Los True")
else:
self.los = 0
log.debug("Los False")
def work(self, input_items, output_items):
"""example: multiply with constant"""
inp = input_items[0]
oup = output_items[0]
if len(self.amplitudes) != len(self.delays): # Test: Es muss gleich viele Werte für Delays und Amplituden haben.
raise Exception("Amplitudes and Delay length dont match")
if np.min(self.delays)<0: #Negativ Check
raise Exception("Delay can't be negativ")
# raise Exception("Delay length can't be one")
#if np.min(self.delays)<=1:
# raise Exception("Delay length can't be one")
max_order = 2 * np.floor(np.max(self.delays)) + 1 #Max Werte herausfinden für länge
max_samples = np.arange(0, max_order +1)
max_len = len(max_samples) #Für Filter
sum_x = np.zeros(int(max_len))
for (a,d) in zip(self.amplitudes,self.delays):
# if d-1 <= 0:
# x = np.concatenate([[a], np.zeros(max_len-1)])
# else:
order = 2 * np.floor(d) + 1
skip = np.floor(d) - (order - 1) / 2 #M sollte immer 0 sein
assert skip >= 0
samples = np.arange(0, order +1)
h = a*(np.sinc(samples-d)) #sinc
h_len = np.concatenate([h, np.zeros(max_len-len(h))])
sum_x += h_len
#x = np.concatenate([np.zeros(d-1), [a], np.zeros(max_len-d)])
#sum_x += x
sum_x[0] = self.los
#log.debug(sum_x)
y = np.convolve(inp, sum_x)
# signal_shifted = np.convolve(h, inp, mode='full')
# y = signal_shifted
y+=np.concatenate([self.temp,np.zeros(len(y)-len(self.temp))])
oup[:] = y[:len(inp)]
self.temp = y[len(inp):]
return len(oup)
|