1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
|
%
% ideale.tex -- Ideale in den ganzen Gaussschen Zahlen
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
\documentclass[tikz]{standalone}
\usepackage{amsmath}
\usepackage{times}
\usepackage{txfonts}
\usepackage{pgfplots}
\usepackage{csvsimple}
\usetikzlibrary{arrows,intersections,math}
\begin{document}
\begin{tikzpicture}[>=latex,thick,scale=0.35]
\begin{scope}[xshift=-9.5cm]
\begin{scope}
\clip (-8.3,-8.3) rectangle (8.3,8.3);
\foreach \x in {-8,...,8}{
\foreach \y in {-8,...,8}{
\fill (\x,\y) circle[radius=0.08];
}
}
\foreach \x in {-8,...,8}{
\foreach \y in {-8,...,8}{
\fill[color=blue]
({\x-2*\y},{2*\x+\y}) circle[radius=0.12];
}
}
\foreach \x in {-8,...,8}{
\draw[color=blue,line width=0.5pt]
({\x-2*(-8)},{2*\x+(-8)})
--
({\x-2*8},{2*\x+8});
}
\foreach \y in {-8,...,8}{
\draw[color=blue,line width=0.5pt]
({(-8)-2*\y},{2*(-8)+\y})
--
({8-2*\y},{2*8+\y});
}
\end{scope}
\draw[->] (-8.3,0) -- (9.1,0) coordinate[label={$\Re z$}];
\draw[->] (0,-8.3) -- (0,8.9) coordinate[label={right:$\Im z$}];
\end{scope}
\begin{scope}[xshift=9.5cm]
\begin{scope}
\clip (-8.3,-8.3) rectangle (8.3,8.3);
\foreach \x in {-8,...,8}{
\foreach \y in {-8,...,8}{
\fill[color=red] ({\x-\y},{\x+\y}) circle[radius=0.12];
}
}
\foreach \x in {-8,...,8}{
\foreach \y in {-8,...,8}{
\fill (\x,\y) circle[radius=0.08];
}
}
\foreach \x in {-8,...,8}{
\draw[color=red,line width=0.5pt]
({\x+8},{\x-8}) -- ({\x-8},{\x+8});
\draw[color=red,line width=0.5pt]
({-8-\x},{-8+\x}) -- ({8-\x},{8+\x});
}
\end{scope}
\draw[->] (-8.3,0) -- (9.1,0) coordinate[label={$\Re z$}];
\draw[->] (0,-8.3) -- (0,8.9) coordinate[label={right:$\Im z$}];
\end{scope}
\end{tikzpicture}
\end{document}
|