1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
|
%
% fundamental.tex -- template for standalon tikz images
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
\documentclass[tikz]{standalone}
\usepackage{amsmath}
\usepackage{times}
\usepackage{txfonts}
\usepackage{pgfplots}
\usepackage{csvsimple}
\usetikzlibrary{arrows,intersections,math}
\begin{document}
\def\skala{1}
\begin{tikzpicture}[>=latex,thick,scale=\skala]
\begin{scope}[xshift=-4.6cm]
\draw[color=red,line width=2pt] (1.8,0) -- (1.8,2);
\draw[color=red,line width=2pt] (0,0) -- (4,0);
\node at (1.8,0) [below] {$i$};
\draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
\draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
\node at (2,-2.3) [below] {Standarbasis};
\end{scope}
\begin{scope}
\draw[color=red,line width=1.4pt]
plot[domain=0:360,samples=100] ({\x/90},{2*sin(\x)});
\draw[color=blue,line width=1.4pt]
plot[domain=0:360,samples=100] ({\x/90},{2*cos(\x)});
\node[color=blue] at (1,-1) {$\Re f_i$};
\node[color=red] at (2,1) {$\Im f_i$};
\draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
\draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
\node at (2,-2.3) [below] {Eigenbasis};
\end{scope}
\begin{scope}[xshift=4.6cm]
\foreach \t in {0.02,0.05,0.1,0.2,0.5}{
\draw[color=red,line width=1.0pt]
plot[domain=-1.8:2.2,samples=100]
({\x+1.8},{exp(-\x*\x/(4*\t))/(sqrt(4*3.1415*\t))});
}
\fill[color=red] (1.8,0) circle[radius=0.08];
\node at (1.8,0) [below] {$\xi$};
\draw[->] (-0.1,0) -- (4.3,0) coordinate[label={$x$}];
\draw[->] (0,-2.1) -- (0,2.3) coordinate[label={right:$y$}];
\node at (2,-2.3) [below] {Fundamentallösung};
\end{scope}
\end{tikzpicture}
\end{document}
|