1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
%
% gh.tex -- Lokalsierungsfunktionen für Wavelets auf einem Graphen
%
% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule
%
\documentclass[tikz]{standalone}
\usepackage{amsmath}
\usepackage{times}
\usepackage{txfonts}
\usepackage{pgfplots}
\usepackage{csvsimple}
\usetikzlibrary{arrows,intersections,math}
\begin{document}
\def\skala{1}
\begin{tikzpicture}[>=latex,thick,scale=\skala]
\definecolor{darkgreen}{rgb}{0,0.6,0}
\def\kurve#1#2{
\draw[color=#2,line width=1.4pt]
plot[domain=0:6.3,samples=400]
({\x},{7*\x*exp(-(\x/#1)*(\x/#1))/#1});
}
\begin{scope}
\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}];
\kurve{1}{red}
\foreach \k in {0,...,4}{
\pgfmathparse{0.30*exp(ln(2)*\k)}
\xdef\l{\pgfmathresult}
\kurve{\l}{blue}
}
\node[color=red] at ({0.7*1},3) [above] {$g(\lambda)$};
\node[color=blue] at ({0.7*0.3*16},3) [above] {$g_i(\lambda)$};
\draw[->] (0,-0.1) -- (0,3.3);
\end{scope}
\begin{scope}[xshift=7cm]
\draw[->] (-0.1,0) -- (6.6,0) coordinate[label={$\lambda$}];
\draw[color=darkgreen,line width=1.4pt]
plot[domain=0:6.3,samples=100]
({\x},{3*exp(-(\x/0.5)*(\x/0.5)});
\draw[->] (0,-0.1) -- (0,3.3) coordinate[label={right:$\color{darkgreen}h(\lambda)$}];
\end{scope}
\end{tikzpicture}
\end{document}
|